作为多奈哌齐潜在纳米载体的聚环氧乙烷-b-聚甲基丙烯酸叔丁酯胶束的制备与表征

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-14 DOI:10.1080/10837450.2024.2423833
Gizem İğdeli, Laura Fritzen, Claus U Pietrzik, Binnur Aydogan Temel
{"title":"作为多奈哌齐潜在纳米载体的聚环氧乙烷-b-聚甲基丙烯酸叔丁酯胶束的制备与表征","authors":"Gizem İğdeli, Laura Fritzen, Claus U Pietrzik, Binnur Aydogan Temel","doi":"10.1080/10837450.2024.2423833","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric micelles were prepared for the delivery of donepezil, a leading Alzheimer's disease drug, to enhance its transport across the blood-brain barrier (BBB). Poly(ethylene glycol)-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) amphiphilic block copolymers were synthesized <i>via</i> reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by gel permeation chromatography and nuclear magnetic resonance spectroscopy. Empty and donepezil loaded polymer micelles were formed using the dialysis method and characterized by dynamic light scattering and transmission electron microscopy. Drug loading efficiency and release behavior were monitored using UV/Vis spectroscopy, and cytotoxicity was evaluated <i>via</i> colorimetric tests and impedance measurements. Additionally, the permeability of the nanocarriers across an <i>in vitro</i> BBB culture model was assessed. Drug-loaded micelles demonstrated similar permeability to free donepezil but offered sustained release and improved stability. This micellar delivery system holds significant potential for improving therapeutic outcomes in Alzheimer's treatment by enhancing donepezil's delivery across the BBB. Improved BBB permeability and sustained drug release could lead to more effective concentration of the drug in the brain, potentially reducing peripheral cholinergic side effects, such as nausea and vomiting, often observed with traditional donepezil administration. This could result in better patient compliance and improved cognitive outcomes, making this nanocarrier system a promising alternative for Alzheimer's therapy.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1111-1120"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of poly(ethylene glycol)-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) micelles as potential nanocarriers for donepezil.\",\"authors\":\"Gizem İğdeli, Laura Fritzen, Claus U Pietrzik, Binnur Aydogan Temel\",\"doi\":\"10.1080/10837450.2024.2423833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymeric micelles were prepared for the delivery of donepezil, a leading Alzheimer's disease drug, to enhance its transport across the blood-brain barrier (BBB). Poly(ethylene glycol)-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) amphiphilic block copolymers were synthesized <i>via</i> reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by gel permeation chromatography and nuclear magnetic resonance spectroscopy. Empty and donepezil loaded polymer micelles were formed using the dialysis method and characterized by dynamic light scattering and transmission electron microscopy. Drug loading efficiency and release behavior were monitored using UV/Vis spectroscopy, and cytotoxicity was evaluated <i>via</i> colorimetric tests and impedance measurements. Additionally, the permeability of the nanocarriers across an <i>in vitro</i> BBB culture model was assessed. Drug-loaded micelles demonstrated similar permeability to free donepezil but offered sustained release and improved stability. This micellar delivery system holds significant potential for improving therapeutic outcomes in Alzheimer's treatment by enhancing donepezil's delivery across the BBB. Improved BBB permeability and sustained drug release could lead to more effective concentration of the drug in the brain, potentially reducing peripheral cholinergic side effects, such as nausea and vomiting, often observed with traditional donepezil administration. This could result in better patient compliance and improved cognitive outcomes, making this nanocarrier system a promising alternative for Alzheimer's therapy.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1111-1120\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2423833\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2423833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

制备了用于递送阿尔茨海默病(AD)主要药物多奈哌齐的聚合物胶束,以增强其通过血脑屏障(BBB)的运输。通过可逆加成-断裂链转移(RAFT)聚合法合成了聚乙二醇-b-聚甲基丙烯酸叔丁酯两亲嵌段共聚物。凝胶渗透色谱(GPC)和核磁共振(NMR)光谱对聚合物进行了表征。利用透析法形成了空胶束和多奈哌齐负载聚合物胶束,并通过动态光散射(DLS)和透射电子显微镜(TEM)对其进行了表征。利用紫外/可见光谱监测了药物负载效率和释放行为,并通过比色测试和阻抗测量评估了细胞毒性。此外,还评估了纳米载体在体外 BBB 培养模型中的渗透性。载药胶束的渗透性与游离多奈哌齐相似,但具有持续释放和更高的稳定性。这种胶束递送系统通过增强多奈哌齐在生物BB中的递送,在改善阿尔茨海默氏症的治疗效果方面具有巨大潜力。改善多奈哌齐的 BBB 通透性和持续药物释放可提高药物在大脑中的有效浓度,从而有可能减少传统多奈哌齐用药经常出现的外周胆碱能副作用,如恶心和呕吐。这可能会提高患者的依从性并改善认知结果,使这种纳米载体系统成为阿尔茨海默氏症治疗的一种有前途的替代疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and characterization of poly(ethylene glycol)-b-poly(tert-butyl methacrylate) micelles as potential nanocarriers for donepezil.

Polymeric micelles were prepared for the delivery of donepezil, a leading Alzheimer's disease drug, to enhance its transport across the blood-brain barrier (BBB). Poly(ethylene glycol)-b-poly(tert-butyl methacrylate) amphiphilic block copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by gel permeation chromatography and nuclear magnetic resonance spectroscopy. Empty and donepezil loaded polymer micelles were formed using the dialysis method and characterized by dynamic light scattering and transmission electron microscopy. Drug loading efficiency and release behavior were monitored using UV/Vis spectroscopy, and cytotoxicity was evaluated via colorimetric tests and impedance measurements. Additionally, the permeability of the nanocarriers across an in vitro BBB culture model was assessed. Drug-loaded micelles demonstrated similar permeability to free donepezil but offered sustained release and improved stability. This micellar delivery system holds significant potential for improving therapeutic outcomes in Alzheimer's treatment by enhancing donepezil's delivery across the BBB. Improved BBB permeability and sustained drug release could lead to more effective concentration of the drug in the brain, potentially reducing peripheral cholinergic side effects, such as nausea and vomiting, often observed with traditional donepezil administration. This could result in better patient compliance and improved cognitive outcomes, making this nanocarrier system a promising alternative for Alzheimer's therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
期刊最新文献
Pharmaceutical excipients in pediatric and geriatric drug formulations: safety, efficacy, and regulatory perspectives. Ionic liquids and their potential use in development and improvement of drug delivery systems: evidence of their tendency to promote drug accumulation in the brain. Meloxicam-amino acids salts/ion pair complexes with advanced solubility, dissolution, and gastric safety. Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents. In vitro cellular uptake and insulin secretion studies on INS-1E cells of exendin-4-loaded self-nanoemulsifying drug delivery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1