Maximin 3 与脂质膜相互作用和特异性的分子和能量分析:体外和硅学评估。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2024-11-01 DOI:10.1002/pro.5188
Pablo Luis Hernández-Adame, Brandt Bertrand, Martha Itzel Escamilla-Ruiz, Jaime Ruiz-García, Carlos Munoz-Garay
{"title":"Maximin 3 与脂质膜相互作用和特异性的分子和能量分析:体外和硅学评估。","authors":"Pablo Luis Hernández-Adame, Brandt Bertrand, Martha Itzel Escamilla-Ruiz, Jaime Ruiz-García, Carlos Munoz-Garay","doi":"10.1002/pro.5188","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5188"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular and energetic analysis of the interaction and specificity of Maximin 3 with lipid membranes: In vitro and in silico assessments.\",\"authors\":\"Pablo Luis Hernández-Adame, Brandt Bertrand, Martha Itzel Escamilla-Ruiz, Jaime Ruiz-García, Carlos Munoz-Garay\",\"doi\":\"10.1002/pro.5188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"33 11\",\"pages\":\"e5188\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5188\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5188","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了抗菌肽 Maximin 3(Max3)与三种不同脂质双分子层模型的相互作用,以深入了解其作用机制和膜特异性。利用脂质体钙蓝素泄漏剂量-反应曲线进行的双分子层扰动试验表明,Max3 是一种选择性膜活性肽。动态光散射记录表明,该肽与脂质体结构结合后不会产生去污作用。朗缪尔单层压缩试验证实了多肽的膜插入能力。衰减全反射-傅立叶变换红外光谱显示,由于 Max3 与膜的相互作用,脂质磷脂亲水头基和疏水酰基链的指纹信号发生了改变。另一方面,与膜表面初始相互作用的全原子分子动力学模拟(MDS)证实了多肽的膜选择性。多肽跨膜分子动力学模拟揭示了多肽如何以不同方式改变脂质双分子层的特性。分子力学泊松-玻尔兹曼表面积计算揭示了多肽与每种膜模型测试时的特定静电相互作用指纹。硅学方法产生的数据可以解释实验中观察到的 Max3 活性和选择性的一些差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular and energetic analysis of the interaction and specificity of Maximin 3 with lipid membranes: In vitro and in silico assessments.

In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A protein fitness predictive framework based on feature combination and intelligent searching. Amino acid variability at W194 of Staphylococcus aureus sortase A alters nucleophile specificity. Characterization of DsrD and its interaction with the DsrAB dissimilatory sulfite reductase. Complexity associated with caprylate binding to bovine serum albumin: Dimerization, allostery, and variance between the change in free energy and enthalpy of binding. Disulfide-mediated oligomerization of mutant Cu/Zn-superoxide dismutase associated with canine degenerative myelopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1