估计贝叶斯临床试验后验决策摘要的采样分布。

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-10-29 DOI:10.1002/bimj.70002
Shirin Golchi, James J. Willard
{"title":"估计贝叶斯临床试验后验决策摘要的采样分布。","authors":"Shirin Golchi,&nbsp;James J. Willard","doi":"10.1002/bimj.70002","DOIUrl":null,"url":null,"abstract":"<p>Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current practice in Bayesian clinical trials relies on a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate conditioning on a given set of parameters. These operating characteristics are commonly obtained via simulation studies. The utility of Bayesian measures, such as “assurance,” that incorporate uncertainty about model parameters in estimating the probabilities of various decisions in trials has been demonstrated. However, the computational burden remains an obstacle toward wider use of such criteria. In this article, we propose methodology which utilizes large sample theory of the posterior distribution to define parametric models for the sampling distribution of the posterior summaries used for decision making. The parameters of these models are estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward the assessment of conditional and marginal operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based. It enables formal incorporation of uncertainty about the trial assumptions via a design prior and significantly reduces the computational burden for the design of Bayesian trials in general.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70002","citationCount":"0","resultStr":"{\"title\":\"Estimating the Sampling Distribution of Posterior Decision Summaries in Bayesian Clinical Trials\",\"authors\":\"Shirin Golchi,&nbsp;James J. Willard\",\"doi\":\"10.1002/bimj.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current practice in Bayesian clinical trials relies on a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate conditioning on a given set of parameters. These operating characteristics are commonly obtained via simulation studies. The utility of Bayesian measures, such as “assurance,” that incorporate uncertainty about model parameters in estimating the probabilities of various decisions in trials has been demonstrated. However, the computational burden remains an obstacle toward wider use of such criteria. In this article, we propose methodology which utilizes large sample theory of the posterior distribution to define parametric models for the sampling distribution of the posterior summaries used for decision making. The parameters of these models are estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward the assessment of conditional and marginal operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based. It enables formal incorporation of uncertainty about the trial assumptions via a design prior and significantly reduces the computational burden for the design of Bayesian trials in general.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在临床试验中,贝叶斯推断法和使用后验或后验预测概率进行决策的方法越来越受欢迎。目前,贝叶斯临床试验的实践依赖于贝叶斯-常模混合方法,即根据常模运行特征(如以给定参数集为条件的功率和 I 类错误率)来评估设计和决策标准。这些运行特征通常通过模拟研究获得。贝叶斯测量法(如 "保证")在估算试验中各种决策的概率时考虑了模型参数的不确定性,其实用性已得到证实。然而,计算负担仍然是广泛使用此类标准的障碍。在本文中,我们提出了利用后验分布的大样本理论来定义用于决策的后验摘要抽样分布参数模型的方法。这些模型的参数通过少量的模拟场景进行估算,从而完善这些模型,以捕捉中小规模样本的抽样分布。所提出的评估条件和边际运行特征以及确定样本量的方法可视为模拟辅助方法,而不是基于模拟的方法。它能通过设计先验正式纳入试验假设的不确定性,并大大减轻了一般贝叶斯试验设计的计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating the Sampling Distribution of Posterior Decision Summaries in Bayesian Clinical Trials

Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current practice in Bayesian clinical trials relies on a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate conditioning on a given set of parameters. These operating characteristics are commonly obtained via simulation studies. The utility of Bayesian measures, such as “assurance,” that incorporate uncertainty about model parameters in estimating the probabilities of various decisions in trials has been demonstrated. However, the computational burden remains an obstacle toward wider use of such criteria. In this article, we propose methodology which utilizes large sample theory of the posterior distribution to define parametric models for the sampling distribution of the posterior summaries used for decision making. The parameters of these models are estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward the assessment of conditional and marginal operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based. It enables formal incorporation of uncertainty about the trial assumptions via a design prior and significantly reduces the computational burden for the design of Bayesian trials in general.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
Survivor Average Causal Effects for Continuous Time: A Principal Stratification Approach to Causal Inference With Semicompeting Risks Wavelet-Mixed Landmark Survival Models for the Effect of Short-Term Changes of Potassium in Heart Failure Patients Issue Information: Biometrical Journal 2'25 Parametric Estimation of the Mean Number of Events in the Presence of Competing Risks Unscaled Indices for Assessing Agreement of Functional Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1