{"title":"从预训练到微调:深入分析生物医学领域的大型语言模型。","authors":"Agnese Bonfigli , Luca Bacco , Mario Merone , Felice Dell’Orletta","doi":"10.1016/j.artmed.2024.103003","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we delve into the adaptation and effectiveness of Transformer-based, pre-trained Large Language Models (LLMs) within the biomedical domain, a field that poses unique challenges due to its complexity and the specialized nature of its data. Building on the foundation laid by the transformative architecture of Transformers, we investigate the nuanced dynamics of LLMs through a multifaceted lens, focusing on two domain-specific tasks, i.e., Natural Language Inference (NLI) and Named Entity Recognition (NER). Our objective is to bridge the knowledge gap regarding how these models’ downstream performances correlate with their capacity to encapsulate task-relevant information. To achieve this goal, we probed and analyzed the inner encoding and attention mechanisms in LLMs, both encoder- and decoder-based, tailored for either general or biomedical-specific applications. This examination occurs before and after the models are fine-tuned across various data volumes. Our findings reveal that the models’ downstream effectiveness is intricately linked to specific patterns within their internal mechanisms, shedding light on the nuanced ways in which LLMs process and apply knowledge in the biomedical context. The source code for this paper is available at <span><span>https://github.com/agnesebonfigli99/LLMs-in-the-Biomedical-Domain</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"157 ","pages":"Article 103003"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From pre-training to fine-tuning: An in-depth analysis of Large Language Models in the biomedical domain\",\"authors\":\"Agnese Bonfigli , Luca Bacco , Mario Merone , Felice Dell’Orletta\",\"doi\":\"10.1016/j.artmed.2024.103003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we delve into the adaptation and effectiveness of Transformer-based, pre-trained Large Language Models (LLMs) within the biomedical domain, a field that poses unique challenges due to its complexity and the specialized nature of its data. Building on the foundation laid by the transformative architecture of Transformers, we investigate the nuanced dynamics of LLMs through a multifaceted lens, focusing on two domain-specific tasks, i.e., Natural Language Inference (NLI) and Named Entity Recognition (NER). Our objective is to bridge the knowledge gap regarding how these models’ downstream performances correlate with their capacity to encapsulate task-relevant information. To achieve this goal, we probed and analyzed the inner encoding and attention mechanisms in LLMs, both encoder- and decoder-based, tailored for either general or biomedical-specific applications. This examination occurs before and after the models are fine-tuned across various data volumes. Our findings reveal that the models’ downstream effectiveness is intricately linked to specific patterns within their internal mechanisms, shedding light on the nuanced ways in which LLMs process and apply knowledge in the biomedical context. The source code for this paper is available at <span><span>https://github.com/agnesebonfigli99/LLMs-in-the-Biomedical-Domain</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"157 \",\"pages\":\"Article 103003\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0933365724002458\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365724002458","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
From pre-training to fine-tuning: An in-depth analysis of Large Language Models in the biomedical domain
In this study, we delve into the adaptation and effectiveness of Transformer-based, pre-trained Large Language Models (LLMs) within the biomedical domain, a field that poses unique challenges due to its complexity and the specialized nature of its data. Building on the foundation laid by the transformative architecture of Transformers, we investigate the nuanced dynamics of LLMs through a multifaceted lens, focusing on two domain-specific tasks, i.e., Natural Language Inference (NLI) and Named Entity Recognition (NER). Our objective is to bridge the knowledge gap regarding how these models’ downstream performances correlate with their capacity to encapsulate task-relevant information. To achieve this goal, we probed and analyzed the inner encoding and attention mechanisms in LLMs, both encoder- and decoder-based, tailored for either general or biomedical-specific applications. This examination occurs before and after the models are fine-tuned across various data volumes. Our findings reveal that the models’ downstream effectiveness is intricately linked to specific patterns within their internal mechanisms, shedding light on the nuanced ways in which LLMs process and apply knowledge in the biomedical context. The source code for this paper is available at https://github.com/agnesebonfigli99/LLMs-in-the-Biomedical-Domain.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.