{"title":"针对一类随机非线性多代理系统,利用识别器-批评者-代理强化学习优化分布式编队控制。","authors":"Guoxing Wen, Ben Niu","doi":"10.1016/j.isatra.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>This article is to propose an adaptive reinforcement learning (RL)-based optimized distributed formation control for the unknown stochastic nonlinear single-integrator dynamic multi-agent system (MAS). For solving the issue of unknown dynamic, an adaptive identifier neural network (NN) is developed to determine the stochastic MAS under expectation sense. And then, for deriving the optimized formation control, the RL is putted into effect via constructing a pair of critic and actor NNs. With regard of the traditional RL optimal controls, their algorithm exists the inherent complexity, because their adaptive RL algorithm are derived from negative gradient of the square of Hamilton-Jacobi-Bellman (HJB) equation. As a result, these methods are difficultly extended to stochastic dynamical systems. However, since this adaptive RL laws are derived from a simple positive function rather than the square of HJB equation, it can make optimal control with simple algorithm. Therefore, this optimized formation scheme can be smoothly performed to the stochastic MAS. Finally, according to theorem proof and computer simulation, the optimized method can realize the required control objective.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized distributed formation control using identifier-critic-actor reinforcement learning for a class of stochastic nonlinear multi-agent systems.\",\"authors\":\"Guoxing Wen, Ben Niu\",\"doi\":\"10.1016/j.isatra.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article is to propose an adaptive reinforcement learning (RL)-based optimized distributed formation control for the unknown stochastic nonlinear single-integrator dynamic multi-agent system (MAS). For solving the issue of unknown dynamic, an adaptive identifier neural network (NN) is developed to determine the stochastic MAS under expectation sense. And then, for deriving the optimized formation control, the RL is putted into effect via constructing a pair of critic and actor NNs. With regard of the traditional RL optimal controls, their algorithm exists the inherent complexity, because their adaptive RL algorithm are derived from negative gradient of the square of Hamilton-Jacobi-Bellman (HJB) equation. As a result, these methods are difficultly extended to stochastic dynamical systems. However, since this adaptive RL laws are derived from a simple positive function rather than the square of HJB equation, it can make optimal control with simple algorithm. Therefore, this optimized formation scheme can be smoothly performed to the stochastic MAS. Finally, according to theorem proof and computer simulation, the optimized method can realize the required control objective.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.10.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized distributed formation control using identifier-critic-actor reinforcement learning for a class of stochastic nonlinear multi-agent systems.
This article is to propose an adaptive reinforcement learning (RL)-based optimized distributed formation control for the unknown stochastic nonlinear single-integrator dynamic multi-agent system (MAS). For solving the issue of unknown dynamic, an adaptive identifier neural network (NN) is developed to determine the stochastic MAS under expectation sense. And then, for deriving the optimized formation control, the RL is putted into effect via constructing a pair of critic and actor NNs. With regard of the traditional RL optimal controls, their algorithm exists the inherent complexity, because their adaptive RL algorithm are derived from negative gradient of the square of Hamilton-Jacobi-Bellman (HJB) equation. As a result, these methods are difficultly extended to stochastic dynamical systems. However, since this adaptive RL laws are derived from a simple positive function rather than the square of HJB equation, it can make optimal control with simple algorithm. Therefore, this optimized formation scheme can be smoothly performed to the stochastic MAS. Finally, according to theorem proof and computer simulation, the optimized method can realize the required control objective.