大脑微观结构的大规模规范建模

Julio E Villalón-Reina, Alyssa H Zhu, Talia M Nir, Sophia I Thomopoulos, Emily Laltoo, Leila Kushan, Carrie E Bearden, Neda Jahanshad, Paul M Thompson
{"title":"大脑微观结构的大规模规范建模","authors":"Julio E Villalón-Reina, Alyssa H Zhu, Talia M Nir, Sophia I Thomopoulos, Emily Laltoo, Leila Kushan, Carrie E Bearden, Neda Jahanshad, Paul M Thompson","doi":"10.1109/SIPAIM56729.2023.10373451","DOIUrl":null,"url":null,"abstract":"<p><p>Normative models of brain metrics based on large populations are extremely valuable for detecting brain abnormalities in patients with dementia, psychiatric, or developmental conditions. Here we present the first large-scale normative model of the brain's white matter (WM) microstructure derived from 18 international diffusion MRI (dMRI) datasets covering almost the entire lifespan (totaling N=51,830 individuals; age: 3-80 years). We extracted regional diffusion tensor imaging (DTI) metrics using a standardized analysis and quality control protocol, and used Hierarchical Bayesian Regression (HBR) to model the statistical distribution of derived WM metrics as a function of age and sex, while modeling the site effect. HBR overcomes known weaknesses of some data harmonization methods that simply scale and shift residual distributions at each site. To illustrate the method, we applied it to detect and visualize profiles of WM microstructural deviations in cohorts of patients with Alzheimer's disease, mild cognitive impairment, Parkinson's disease and in carriers of 22q11.2 copy number variants, a rare neurogenetic condition that confers increased risk for psychosis. The resulting large-scale model offers a common reference to identify disease effects in individuals or groups, as well as to compare disorders and discover factors that influence these abnormalities.</p>","PeriodicalId":520270,"journal":{"name":"2023 19th International Symposium on Medical Information Processing and Analysis (SIPAIM). Institute of Electrical and Electronics Engineers","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large-scale Normative Modeling of Brain Microstructure.\",\"authors\":\"Julio E Villalón-Reina, Alyssa H Zhu, Talia M Nir, Sophia I Thomopoulos, Emily Laltoo, Leila Kushan, Carrie E Bearden, Neda Jahanshad, Paul M Thompson\",\"doi\":\"10.1109/SIPAIM56729.2023.10373451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Normative models of brain metrics based on large populations are extremely valuable for detecting brain abnormalities in patients with dementia, psychiatric, or developmental conditions. Here we present the first large-scale normative model of the brain's white matter (WM) microstructure derived from 18 international diffusion MRI (dMRI) datasets covering almost the entire lifespan (totaling N=51,830 individuals; age: 3-80 years). We extracted regional diffusion tensor imaging (DTI) metrics using a standardized analysis and quality control protocol, and used Hierarchical Bayesian Regression (HBR) to model the statistical distribution of derived WM metrics as a function of age and sex, while modeling the site effect. HBR overcomes known weaknesses of some data harmonization methods that simply scale and shift residual distributions at each site. To illustrate the method, we applied it to detect and visualize profiles of WM microstructural deviations in cohorts of patients with Alzheimer's disease, mild cognitive impairment, Parkinson's disease and in carriers of 22q11.2 copy number variants, a rare neurogenetic condition that confers increased risk for psychosis. The resulting large-scale model offers a common reference to identify disease effects in individuals or groups, as well as to compare disorders and discover factors that influence these abnormalities.</p>\",\"PeriodicalId\":520270,\"journal\":{\"name\":\"2023 19th International Symposium on Medical Information Processing and Analysis (SIPAIM). Institute of Electrical and Electronics Engineers\",\"volume\":\"2023 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 19th International Symposium on Medical Information Processing and Analysis (SIPAIM). Institute of Electrical and Electronics Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPAIM56729.2023.10373451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 19th International Symposium on Medical Information Processing and Analysis (SIPAIM). Institute of Electrical and Electronics Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPAIM56729.2023.10373451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于大量人群的大脑指标常模对于检测痴呆症、精神病或发育异常患者的大脑异常非常有价值。在这里,我们展示了首个大规模大脑白质(WM)微观结构规范模型,该模型来自 18 个国际弥散核磁共振成像(dMRI)数据集,几乎涵盖了整个生命周期(总人数=51,830 人;年龄:3-80 岁)。我们使用标准化的分析和质量控制协议提取了区域弥散张量成像(DTI)指标,并使用层次贝叶斯回归(HBR)建立了作为年龄和性别函数的衍生 WM 指标统计分布模型,同时建立了部位效应模型。HBR 克服了某些数据协调方法的已知弱点,这些方法只是简单地缩放和移动每个研究地点的残差分布。为了说明这种方法,我们将其应用于检测和可视化阿尔茨海默病患者、轻度认知障碍患者、帕金森病患者以及 22q11.2 拷贝数变异(一种罕见的神经遗传病,会增加患精神病的风险)携带者的 WM 微结构偏差特征。由此产生的大规模模型为确定个体或群体的疾病影响、比较疾病和发现影响这些异常的因素提供了共同的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale Normative Modeling of Brain Microstructure.

Normative models of brain metrics based on large populations are extremely valuable for detecting brain abnormalities in patients with dementia, psychiatric, or developmental conditions. Here we present the first large-scale normative model of the brain's white matter (WM) microstructure derived from 18 international diffusion MRI (dMRI) datasets covering almost the entire lifespan (totaling N=51,830 individuals; age: 3-80 years). We extracted regional diffusion tensor imaging (DTI) metrics using a standardized analysis and quality control protocol, and used Hierarchical Bayesian Regression (HBR) to model the statistical distribution of derived WM metrics as a function of age and sex, while modeling the site effect. HBR overcomes known weaknesses of some data harmonization methods that simply scale and shift residual distributions at each site. To illustrate the method, we applied it to detect and visualize profiles of WM microstructural deviations in cohorts of patients with Alzheimer's disease, mild cognitive impairment, Parkinson's disease and in carriers of 22q11.2 copy number variants, a rare neurogenetic condition that confers increased risk for psychosis. The resulting large-scale model offers a common reference to identify disease effects in individuals or groups, as well as to compare disorders and discover factors that influence these abnormalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-scale Normative Modeling of Brain Microstructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1