通过混合延迟脉冲实现时延动态网络的同步化

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-10-28 DOI:10.1016/j.neunet.2024.106835
Huannan Zheng , Wei Zhu , Xiaodi Li
{"title":"通过混合延迟脉冲实现时延动态网络的同步化","authors":"Huannan Zheng ,&nbsp;Wei Zhu ,&nbsp;Xiaodi Li","doi":"10.1016/j.neunet.2024.106835","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the synchronization problem of time-delay dynamical networks by means of hybrid delayed impulses, where synchronizing impulses and desynchronizing impulses can occur simultaneously. Some sufficient synchronization conditions are established based on Razumikhin-type inequality and Lyapunov function. These conditions do not place any limitation on the magnitude of time-delay in dynamical networks. To be specific, it can be less than or greater than the length of impulses intervals and has no magnitude relationship with delays in impulses. Moreover, results indicate that delays in impulses have positive contributions to synchronization. The effectiveness of the theoretical results is demonstrated by two numerical examples.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106835"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of time-delay dynamical networks via hybrid delayed impulses\",\"authors\":\"Huannan Zheng ,&nbsp;Wei Zhu ,&nbsp;Xiaodi Li\",\"doi\":\"10.1016/j.neunet.2024.106835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the synchronization problem of time-delay dynamical networks by means of hybrid delayed impulses, where synchronizing impulses and desynchronizing impulses can occur simultaneously. Some sufficient synchronization conditions are established based on Razumikhin-type inequality and Lyapunov function. These conditions do not place any limitation on the magnitude of time-delay in dynamical networks. To be specific, it can be less than or greater than the length of impulses intervals and has no magnitude relationship with delays in impulses. Moreover, results indicate that delays in impulses have positive contributions to synchronization. The effectiveness of the theoretical results is demonstrated by two numerical examples.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106835\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024007597\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007597","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文通过混合延迟脉冲来研究时延动态网络的同步问题,其中同步脉冲和非同步脉冲可以同时发生。本文基于拉祖米金型不等式和 Lyapunov 函数,建立了一些充分同步条件。这些条件对动态网络中的时延大小没有任何限制。具体来说,它可以小于或大于脉冲间隔的长度,与脉冲延迟的大小没有关系。此外,研究结果表明,脉冲延迟对同步有积极作用。两个数值实例证明了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of time-delay dynamical networks via hybrid delayed impulses
This paper investigates the synchronization problem of time-delay dynamical networks by means of hybrid delayed impulses, where synchronizing impulses and desynchronizing impulses can occur simultaneously. Some sufficient synchronization conditions are established based on Razumikhin-type inequality and Lyapunov function. These conditions do not place any limitation on the magnitude of time-delay in dynamical networks. To be specific, it can be less than or greater than the length of impulses intervals and has no magnitude relationship with delays in impulses. Moreover, results indicate that delays in impulses have positive contributions to synchronization. The effectiveness of the theoretical results is demonstrated by two numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Multi-view Graph Pooling with Coarsened Graph Disentanglement" [Neural Networks 174 (2024) 1-10/106221]. Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1