Tahani M. Ahmad MD, ABR , Alessandro Guida PhD , Sam Stewart PhD , Noah Barrett MSc , Michael J. Vincer MD , Jehier K. Afifi MD, MSc
{"title":"利用脑超声波预测极早产儿神经发育结果的深度学习模型","authors":"Tahani M. Ahmad MD, ABR , Alessandro Guida PhD , Sam Stewart PhD , Noah Barrett MSc , Michael J. Vincer MD , Jehier K. Afifi MD, MSc","doi":"10.1016/j.mcpdig.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.</div></div><div><h3>Patients and Methods</h3><div>This is a retrospective study of a cohort of VPI (22<sup>0</sup>-30<sup>6</sup> weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.</div></div><div><h3>Results</h3><div>Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).</div></div><div><h3>Conclusion</h3><div>We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 4","pages":"Pages 596-605"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Model for Predicting Neurodevelopmental Outcome in Very Preterm Infants Using Cerebral Ultrasound\",\"authors\":\"Tahani M. Ahmad MD, ABR , Alessandro Guida PhD , Sam Stewart PhD , Noah Barrett MSc , Michael J. Vincer MD , Jehier K. Afifi MD, MSc\",\"doi\":\"10.1016/j.mcpdig.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.</div></div><div><h3>Patients and Methods</h3><div>This is a retrospective study of a cohort of VPI (22<sup>0</sup>-30<sup>6</sup> weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.</div></div><div><h3>Results</h3><div>Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).</div></div><div><h3>Conclusion</h3><div>We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.</div></div>\",\"PeriodicalId\":74127,\"journal\":{\"name\":\"Mayo Clinic Proceedings. Digital health\",\"volume\":\"2 4\",\"pages\":\"Pages 596-605\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mayo Clinic Proceedings. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949761224001007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Model for Predicting Neurodevelopmental Outcome in Very Preterm Infants Using Cerebral Ultrasound
Objective
To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.
Patients and Methods
This is a retrospective study of a cohort of VPI (220-306 weeks’ gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models’ performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.
Results
Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).
Conclusion
We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.