Wei Pan , Jihong Shen , Bo Wang , Shujuan Wang , Zhanhao Sun
{"title":"基于深度学习和假设检验相结合的开放集识别,用于检测未知核故障","authors":"Wei Pan , Jihong Shen , Bo Wang , Shujuan Wang , Zhanhao Sun","doi":"10.1016/j.nucengdes.2024.113654","DOIUrl":null,"url":null,"abstract":"<div><div>Most current fault diagnosis techniques for nuclear systems mainly rely on the closed-set assumption, which restricts the diagnosis model to select from a set of pre-established known fault classes. However, the nuclear system is a dynamic open system, and unknown faults that have never been seen can occur at any time. Therefore, it is very meaningful to design a diagnosis model that can recognize both known and unknown faults. This paper proposes a fault diagnosis method for open-set scenarios. Specifically, a modified loss function is used to train a convolutional neural network (CNN) to learn more compact feature representations of known classes. The features output by the last fully connected layer of the CNN are taken as the scores belonging to each known class, and a calibration model based on extreme value theory (EVT) is introduced to calibrate the scores. In addition, hypothesis testing is introduced for statistical inference. The threshold is determined according to the confidence level to distinguish the known faults from the unknown faults. Experiments conducted on two sets of nuclear system faults simulation data demonstrate that the proposed model not only identifies more unknown faults without compromising the accuracy of known fault classification but also selects more appropriate thresholds for different datasets, thereby enhancing the model’s generalization capability. Furthermore, experiments under varying degrees of openness also prove that our model exhibits higher robustness across different levels of openness.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-set recognition based on the combination of deep learning and hypothesis testing for detecting unknown nuclear faults\",\"authors\":\"Wei Pan , Jihong Shen , Bo Wang , Shujuan Wang , Zhanhao Sun\",\"doi\":\"10.1016/j.nucengdes.2024.113654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most current fault diagnosis techniques for nuclear systems mainly rely on the closed-set assumption, which restricts the diagnosis model to select from a set of pre-established known fault classes. However, the nuclear system is a dynamic open system, and unknown faults that have never been seen can occur at any time. Therefore, it is very meaningful to design a diagnosis model that can recognize both known and unknown faults. This paper proposes a fault diagnosis method for open-set scenarios. Specifically, a modified loss function is used to train a convolutional neural network (CNN) to learn more compact feature representations of known classes. The features output by the last fully connected layer of the CNN are taken as the scores belonging to each known class, and a calibration model based on extreme value theory (EVT) is introduced to calibrate the scores. In addition, hypothesis testing is introduced for statistical inference. The threshold is determined according to the confidence level to distinguish the known faults from the unknown faults. Experiments conducted on two sets of nuclear system faults simulation data demonstrate that the proposed model not only identifies more unknown faults without compromising the accuracy of known fault classification but also selects more appropriate thresholds for different datasets, thereby enhancing the model’s generalization capability. Furthermore, experiments under varying degrees of openness also prove that our model exhibits higher robustness across different levels of openness.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007544\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007544","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Open-set recognition based on the combination of deep learning and hypothesis testing for detecting unknown nuclear faults
Most current fault diagnosis techniques for nuclear systems mainly rely on the closed-set assumption, which restricts the diagnosis model to select from a set of pre-established known fault classes. However, the nuclear system is a dynamic open system, and unknown faults that have never been seen can occur at any time. Therefore, it is very meaningful to design a diagnosis model that can recognize both known and unknown faults. This paper proposes a fault diagnosis method for open-set scenarios. Specifically, a modified loss function is used to train a convolutional neural network (CNN) to learn more compact feature representations of known classes. The features output by the last fully connected layer of the CNN are taken as the scores belonging to each known class, and a calibration model based on extreme value theory (EVT) is introduced to calibrate the scores. In addition, hypothesis testing is introduced for statistical inference. The threshold is determined according to the confidence level to distinguish the known faults from the unknown faults. Experiments conducted on two sets of nuclear system faults simulation data demonstrate that the proposed model not only identifies more unknown faults without compromising the accuracy of known fault classification but also selects more appropriate thresholds for different datasets, thereby enhancing the model’s generalization capability. Furthermore, experiments under varying degrees of openness also prove that our model exhibits higher robustness across different levels of openness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.