{"title":"具有任意初始状态的非线性系统的鲁棒自适应规定性能控制","authors":"Shiwei Chen , Wei Wang , Junfang Fan","doi":"10.1016/j.jfranklin.2024.107321","DOIUrl":null,"url":null,"abstract":"<div><div>The initial state of nonlinear MIMO strict feedback systems is often unpredictable and random, and existing prescribed performance control (PPC) techniques can only guarantee system output constraints within a fixed initial value performance boundary. In this paper, an adaptive PPC method tailored for nonlinear systems was introduced, enabling the system stable tracking regardless of the arbitrary initial states. To guarantee that the tracking error consistently meets the prescribed performance boundary(PPB) envelope, we introduce a nonlinear mapping between the initial value of the prescribed performance functions(PPFs) and the system tracking errors, resulting in an asymmetric time-varying performance boundary. Building upon this foundation, an adaptive PPC scheme is proposed under the backstepping framework, integrated with a nonlinear disturbance observer (NDO). This method ensures that the tracking error remains within the desired PPB, regardless of external disturbances or system initial states. To prevent ‘complexity explosion’, a dynamic surface control (DSC) technology is employed to filter the virtual control signals of each subsystem. Furthermore, the ultimate uniform boundedness of the closed-loop signal has been demonstrated, and a practical flight vehicles roll control case was introduced to validate the efficacy of the proposed method.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 18","pages":"Article 107321"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust adaptive prescribed performance control for nonlinear systems with arbitrary initial states\",\"authors\":\"Shiwei Chen , Wei Wang , Junfang Fan\",\"doi\":\"10.1016/j.jfranklin.2024.107321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The initial state of nonlinear MIMO strict feedback systems is often unpredictable and random, and existing prescribed performance control (PPC) techniques can only guarantee system output constraints within a fixed initial value performance boundary. In this paper, an adaptive PPC method tailored for nonlinear systems was introduced, enabling the system stable tracking regardless of the arbitrary initial states. To guarantee that the tracking error consistently meets the prescribed performance boundary(PPB) envelope, we introduce a nonlinear mapping between the initial value of the prescribed performance functions(PPFs) and the system tracking errors, resulting in an asymmetric time-varying performance boundary. Building upon this foundation, an adaptive PPC scheme is proposed under the backstepping framework, integrated with a nonlinear disturbance observer (NDO). This method ensures that the tracking error remains within the desired PPB, regardless of external disturbances or system initial states. To prevent ‘complexity explosion’, a dynamic surface control (DSC) technology is employed to filter the virtual control signals of each subsystem. Furthermore, the ultimate uniform boundedness of the closed-loop signal has been demonstrated, and a practical flight vehicles roll control case was introduced to validate the efficacy of the proposed method.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 18\",\"pages\":\"Article 107321\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224007427\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007427","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust adaptive prescribed performance control for nonlinear systems with arbitrary initial states
The initial state of nonlinear MIMO strict feedback systems is often unpredictable and random, and existing prescribed performance control (PPC) techniques can only guarantee system output constraints within a fixed initial value performance boundary. In this paper, an adaptive PPC method tailored for nonlinear systems was introduced, enabling the system stable tracking regardless of the arbitrary initial states. To guarantee that the tracking error consistently meets the prescribed performance boundary(PPB) envelope, we introduce a nonlinear mapping between the initial value of the prescribed performance functions(PPFs) and the system tracking errors, resulting in an asymmetric time-varying performance boundary. Building upon this foundation, an adaptive PPC scheme is proposed under the backstepping framework, integrated with a nonlinear disturbance observer (NDO). This method ensures that the tracking error remains within the desired PPB, regardless of external disturbances or system initial states. To prevent ‘complexity explosion’, a dynamic surface control (DSC) technology is employed to filter the virtual control signals of each subsystem. Furthermore, the ultimate uniform boundedness of the closed-loop signal has been demonstrated, and a practical flight vehicles roll control case was introduced to validate the efficacy of the proposed method.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.