弱监督物体检测只需一个点

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-10-23 DOI:10.1016/j.patcog.2024.111087
{"title":"弱监督物体检测只需一个点","authors":"","doi":"10.1016/j.patcog.2024.111087","DOIUrl":null,"url":null,"abstract":"<div><div>Object detection with weak annotations has attracted much attention recently. Weakly supervised object detection(WSOD) methods which only use image-level labels to train a detector encounter some severe problems that it cannot cover the whole object and the region proposal methods waste a large amount of time. Meanwhile, point supervised object detection(PSOD) leverages point annotations that remarkably improves the performance. However, point annotation is still complex and increase the costs of annotation. To overcome these issues, we propose a novel method which only requires one point per category for a training image. Compared to point annotation, our method significantly reduces the annotation cost as the number of point annotations is largely reduced. We design a framework to train a detector with one point per category annotation. Firstly, a pseudo box generation module is introduced to generate the corresponding pseudo boxes of the annotated points. Then, inspired by the observation that the features of objects with the same class in an image are very similar, a dense instances mining module is proposed to make use of the similarity between the features of objects with the same class to discover unlabeled instances and generate pseudo category heatmaps. Finally, the pseudo boxes and pseudo category heatmaps are leveraged to train a detector. Experiments conducted on popular open-source datasets verify the effectiveness of our annotation method and framework. Our proposed method outperforms previous WSOD methods and achieves comparable performance with some PSOD methods in a more efficient way.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One point is all you need for weakly supervised object detection\",\"authors\":\"\",\"doi\":\"10.1016/j.patcog.2024.111087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Object detection with weak annotations has attracted much attention recently. Weakly supervised object detection(WSOD) methods which only use image-level labels to train a detector encounter some severe problems that it cannot cover the whole object and the region proposal methods waste a large amount of time. Meanwhile, point supervised object detection(PSOD) leverages point annotations that remarkably improves the performance. However, point annotation is still complex and increase the costs of annotation. To overcome these issues, we propose a novel method which only requires one point per category for a training image. Compared to point annotation, our method significantly reduces the annotation cost as the number of point annotations is largely reduced. We design a framework to train a detector with one point per category annotation. Firstly, a pseudo box generation module is introduced to generate the corresponding pseudo boxes of the annotated points. Then, inspired by the observation that the features of objects with the same class in an image are very similar, a dense instances mining module is proposed to make use of the similarity between the features of objects with the same class to discover unlabeled instances and generate pseudo category heatmaps. Finally, the pseudo boxes and pseudo category heatmaps are leveraged to train a detector. Experiments conducted on popular open-source datasets verify the effectiveness of our annotation method and framework. Our proposed method outperforms previous WSOD methods and achieves comparable performance with some PSOD methods in a more efficient way.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008380\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008380","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近来,弱注释物体检测备受关注。弱监督物体检测(WSOD)方法仅使用图像级标签来训练检测器,会遇到一些严重的问题,即无法覆盖整个物体,而且区域建议方法会浪费大量时间。与此同时,点监督对象检测(PSOD)利用点注释显著提高了性能。然而,点标注仍然很复杂,而且会增加标注成本。为了克服这些问题,我们提出了一种新方法,它只需要对训练图像的每个类别标注一个点。与点标注相比,我们的方法大大减少了点标注的数量,从而显著降低了标注成本。我们设计了一个框架,用每个类别一个点的注释来训练检测器。首先,我们引入了一个伪方框生成模块,用于生成注释点对应的伪方框。然后,受图像中同一类别的物体特征非常相似这一观察结果的启发,我们提出了一个密集实例挖掘模块,利用同一类别的物体特征之间的相似性来发现未标注的实例,并生成伪类别热图。最后,利用伪方框和伪类别热图来训练检测器。在流行的开源数据集上进行的实验验证了我们的标注方法和框架的有效性。我们提出的方法优于之前的 WSOD 方法,并以更高效的方式实现了与某些 PSOD 方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One point is all you need for weakly supervised object detection
Object detection with weak annotations has attracted much attention recently. Weakly supervised object detection(WSOD) methods which only use image-level labels to train a detector encounter some severe problems that it cannot cover the whole object and the region proposal methods waste a large amount of time. Meanwhile, point supervised object detection(PSOD) leverages point annotations that remarkably improves the performance. However, point annotation is still complex and increase the costs of annotation. To overcome these issues, we propose a novel method which only requires one point per category for a training image. Compared to point annotation, our method significantly reduces the annotation cost as the number of point annotations is largely reduced. We design a framework to train a detector with one point per category annotation. Firstly, a pseudo box generation module is introduced to generate the corresponding pseudo boxes of the annotated points. Then, inspired by the observation that the features of objects with the same class in an image are very similar, a dense instances mining module is proposed to make use of the similarity between the features of objects with the same class to discover unlabeled instances and generate pseudo category heatmaps. Finally, the pseudo boxes and pseudo category heatmaps are leveraged to train a detector. Experiments conducted on popular open-source datasets verify the effectiveness of our annotation method and framework. Our proposed method outperforms previous WSOD methods and achieves comparable performance with some PSOD methods in a more efficient way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification L2T-DFM: Learning to Teach with Dynamic Fused Metric Image shadow removal via multi-scale deep Retinex decomposition ANNE: Adaptive Nearest Neighbours and Eigenvector-based sample selection for robust learning with noisy labels Consistency-driven feature scoring and regularization network for visible–infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1