{"title":"利用边缘-雾-云计算环境中的区块链和联合学习,利用物联网中的心电图数据进行智能决策","authors":"Shinu M. Rajagopal , Supriya M. , Rajkumar Buyya","doi":"10.1016/j.jnca.2024.104037","DOIUrl":null,"url":null,"abstract":"<div><div>Blockchain technology combined with Federated Learning (FL) offers a promising solution for enhancing privacy, security, and efficiency in medical IoT applications across edge, fog, and cloud computing environments. This approach enables multiple medical IoT devices at the network edge to collaboratively train a global machine learning model without sharing raw data, addressing privacy concerns associated with centralized data storage. This paper presents a blockchain and FL-based Smart Decision Making framework for ECG data in microservice-based IoT medical applications. Leveraging edge/fog computing for real-time critical applications, the framework implements a FL model across edge, fog, and cloud layers. Evaluation criteria including energy consumption, latency, execution time, cost, and network usage show that edge-based deployment outperforms fog and cloud, with significant advantages in energy consumption (0.1% vs. Fog, 0.9% vs. Cloud), network usage (1.1% vs. Fog, 31% vs. Cloud), cost (3% vs. Fog, 20% vs. Cloud), execution time (16% vs. Fog, 28% vs. Cloud), and latency (1% vs. Fog, 79% vs. Cloud).</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"233 ","pages":"Article 104037"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging blockchain and federated learning in Edge-Fog-Cloud computing environments for intelligent decision-making with ECG data in IoT\",\"authors\":\"Shinu M. Rajagopal , Supriya M. , Rajkumar Buyya\",\"doi\":\"10.1016/j.jnca.2024.104037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Blockchain technology combined with Federated Learning (FL) offers a promising solution for enhancing privacy, security, and efficiency in medical IoT applications across edge, fog, and cloud computing environments. This approach enables multiple medical IoT devices at the network edge to collaboratively train a global machine learning model without sharing raw data, addressing privacy concerns associated with centralized data storage. This paper presents a blockchain and FL-based Smart Decision Making framework for ECG data in microservice-based IoT medical applications. Leveraging edge/fog computing for real-time critical applications, the framework implements a FL model across edge, fog, and cloud layers. Evaluation criteria including energy consumption, latency, execution time, cost, and network usage show that edge-based deployment outperforms fog and cloud, with significant advantages in energy consumption (0.1% vs. Fog, 0.9% vs. Cloud), network usage (1.1% vs. Fog, 31% vs. Cloud), cost (3% vs. Fog, 20% vs. Cloud), execution time (16% vs. Fog, 28% vs. Cloud), and latency (1% vs. Fog, 79% vs. Cloud).</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"233 \",\"pages\":\"Article 104037\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524002145\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002145","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Leveraging blockchain and federated learning in Edge-Fog-Cloud computing environments for intelligent decision-making with ECG data in IoT
Blockchain technology combined with Federated Learning (FL) offers a promising solution for enhancing privacy, security, and efficiency in medical IoT applications across edge, fog, and cloud computing environments. This approach enables multiple medical IoT devices at the network edge to collaboratively train a global machine learning model without sharing raw data, addressing privacy concerns associated with centralized data storage. This paper presents a blockchain and FL-based Smart Decision Making framework for ECG data in microservice-based IoT medical applications. Leveraging edge/fog computing for real-time critical applications, the framework implements a FL model across edge, fog, and cloud layers. Evaluation criteria including energy consumption, latency, execution time, cost, and network usage show that edge-based deployment outperforms fog and cloud, with significant advantages in energy consumption (0.1% vs. Fog, 0.9% vs. Cloud), network usage (1.1% vs. Fog, 31% vs. Cloud), cost (3% vs. Fog, 20% vs. Cloud), execution time (16% vs. Fog, 28% vs. Cloud), and latency (1% vs. Fog, 79% vs. Cloud).
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.