利用脂肪分解酵母的系统代谢工程高效生产植物激素脱落酸

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2024-10-18 DOI:10.1016/j.synbio.2024.10.004
{"title":"利用脂肪分解酵母的系统代谢工程高效生产植物激素脱落酸","authors":"","doi":"10.1016/j.synbio.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Abscisic acid (ABA) is an important phytohormone with diverse applications. It currently relies on the fermentation of <em>Botrytis cinerea</em>, which suffers from limited availability of genetic engineering tools. Here, <em>Yarrowia lipolytica</em> was engineered to enable <em>de novo</em> biosynthesis of ABA. To overcome the rate-limiting P450 enzymes, systematic engineering strategies were implemented. Firstly, the dissolved oxygen was increased to boost the activity of P450 enzymes. Secondly, the expansion of endoplasmic reticulum was implemented to improve the functional expression of P450 enzymes. Lastly, rate-limiting enzymes were assembled to facilitate substrate trafficking. Moreover, ABA production was further improved by strengthening the mevalonate pathway. Finally, the engineered strain produced 1221.45 mg/L of ABA in a 5-L bioreactor. The study provides effective approaches for alleviating rate-limiting P450 enzymes to enhance ABA production and achieve competitive industrial-level ABA production in <em>Y. lipolytica</em>.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic metabolic engineering of Yarrowia lipolytica for efficient production of phytohormone abscisic acid\",\"authors\":\"\",\"doi\":\"10.1016/j.synbio.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Abscisic acid (ABA) is an important phytohormone with diverse applications. It currently relies on the fermentation of <em>Botrytis cinerea</em>, which suffers from limited availability of genetic engineering tools. Here, <em>Yarrowia lipolytica</em> was engineered to enable <em>de novo</em> biosynthesis of ABA. To overcome the rate-limiting P450 enzymes, systematic engineering strategies were implemented. Firstly, the dissolved oxygen was increased to boost the activity of P450 enzymes. Secondly, the expansion of endoplasmic reticulum was implemented to improve the functional expression of P450 enzymes. Lastly, rate-limiting enzymes were assembled to facilitate substrate trafficking. Moreover, ABA production was further improved by strengthening the mevalonate pathway. Finally, the engineered strain produced 1221.45 mg/L of ABA in a 5-L bioreactor. The study provides effective approaches for alleviating rate-limiting P450 enzymes to enhance ABA production and achieve competitive industrial-level ABA production in <em>Y. lipolytica</em>.</div></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001340\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001340","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脱落酸(ABA)是一种重要的植物激素,具有多种用途。目前,它依赖于西尼瑞氏菌的发酵,而西尼瑞氏菌的发酵受制于有限的基因工程工具。在这里,我们改造了脂肪分解蓍草菌(Yarrowia lipolytica),使其能够从头开始生物合成 ABA。为了克服 P450 酶的速率限制,我们实施了系统工程策略。首先,增加溶解氧以提高 P450 酶的活性。其次,扩大内质网以提高 P450 酶的功能表达。最后,组装限速酶以促进底物的运输。此外,还通过加强甲羟戊酸途径进一步提高了 ABA 的产量。最后,工程菌株在 5 升生物反应器中产生了 1221.45 毫克/升的 ABA。这项研究提供了有效的方法来减轻限速 P450 酶的作用,从而提高脂溶性酵母菌的 ABA 产量,并实现具有竞争力的工业级 ABA 生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic metabolic engineering of Yarrowia lipolytica for efficient production of phytohormone abscisic acid
Abscisic acid (ABA) is an important phytohormone with diverse applications. It currently relies on the fermentation of Botrytis cinerea, which suffers from limited availability of genetic engineering tools. Here, Yarrowia lipolytica was engineered to enable de novo biosynthesis of ABA. To overcome the rate-limiting P450 enzymes, systematic engineering strategies were implemented. Firstly, the dissolved oxygen was increased to boost the activity of P450 enzymes. Secondly, the expansion of endoplasmic reticulum was implemented to improve the functional expression of P450 enzymes. Lastly, rate-limiting enzymes were assembled to facilitate substrate trafficking. Moreover, ABA production was further improved by strengthening the mevalonate pathway. Finally, the engineered strain produced 1221.45 mg/L of ABA in a 5-L bioreactor. The study provides effective approaches for alleviating rate-limiting P450 enzymes to enhance ABA production and achieve competitive industrial-level ABA production in Y. lipolytica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Engineering transcriptional regulatory networks for improving second-generation fuel ethanol production in Saccharomyces cerevisiae Biosensors for the detection of flaviviruses: A review Systematic metabolic engineering of Yarrowia lipolytica for efficient production of phytohormone abscisic acid Enhancing substrate specificity of microbial transglutaminase for precise nanobody labeling Mechanistic insights into the orthogonal functionality of an AHL-mediated quorum-sensing circuit in Yersinia pseudotuberculosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1