{"title":"对耶尔森氏菌假结核中 AHL 介导的法定量感应回路的正交功能的机理认识","authors":"","doi":"10.1016/j.synbio.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>YpsR, a pivotal regulatory protein in the quorum-sensing (QS) of <em>Yersinia pseudotuberculosis</em>(<em>Y. pstb</em>), is essential for molecular signaling, yet its molecular mechanisms remain poorly understood. Herein, this study systematically investigates the interactions between YpsR and acyl-homoserine lactones (AHLs), shedding light on the selective mechanism of YpsR to various AHL molecules. Using molecular docking and surface plasmon resonance (SPR) analysis, we confirmed YpsR's binding affinities, with the strongest observed for 3OC6-HSL, which notably inhibited <em>Y. pstb</em> growth. Additionally, we engineered a whole-cell biosensor based on YpsR-AHL interaction, which exhibited sensitivity to the signal molecule 3OC6-HSL produced by <em>Y. pstb</em>. Furthermore, key YpsR residues (S32, Y50, W54, D67) involved in AHL binding were identified and validated. Overall, this research elucidates the mechanisms of QS signal recognition in <em>Y. pstb</em>, providing valuable insights that support the development of diagnostic tools for detecting <em>Y. pstb</em> infections.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into the orthogonal functionality of an AHL-mediated quorum-sensing circuit in Yersinia pseudotuberculosis\",\"authors\":\"\",\"doi\":\"10.1016/j.synbio.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>YpsR, a pivotal regulatory protein in the quorum-sensing (QS) of <em>Yersinia pseudotuberculosis</em>(<em>Y. pstb</em>), is essential for molecular signaling, yet its molecular mechanisms remain poorly understood. Herein, this study systematically investigates the interactions between YpsR and acyl-homoserine lactones (AHLs), shedding light on the selective mechanism of YpsR to various AHL molecules. Using molecular docking and surface plasmon resonance (SPR) analysis, we confirmed YpsR's binding affinities, with the strongest observed for 3OC6-HSL, which notably inhibited <em>Y. pstb</em> growth. Additionally, we engineered a whole-cell biosensor based on YpsR-AHL interaction, which exhibited sensitivity to the signal molecule 3OC6-HSL produced by <em>Y. pstb</em>. Furthermore, key YpsR residues (S32, Y50, W54, D67) involved in AHL binding were identified and validated. Overall, this research elucidates the mechanisms of QS signal recognition in <em>Y. pstb</em>, providing valuable insights that support the development of diagnostic tools for detecting <em>Y. pstb</em> infections.</div></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001327\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001327","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
YpsR是假结核耶尔森菌(Y. pseudotuberculosis,Y. pstb)法定量感应(QS)过程中的关键调控蛋白,对分子信号转导至关重要,但其分子机制仍鲜为人知。本研究系统研究了 YpsR 与酰基高丝氨酸内酯(AHLs)之间的相互作用,揭示了 YpsR 对各种 AHL 分子的选择性机制。通过分子对接和表面等离子体共振(SPR)分析,我们证实了 YpsR 的结合亲和力,其中 3OC6-HSL 的结合亲和力最强,能显著抑制 Y. pstb 的生长。此外,我们还设计了一种基于 YpsR-AHL 相互作用的全细胞生物传感器,它对 Y. pstb 产生的信号分子 3OC6-HSL 具有敏感性。此外,我们还鉴定并验证了参与 AHL 结合的关键 YpsR 残基(S32、Y50、W54、D67)。总之,这项研究阐明了 Y. pstb 的 QS 信号识别机制,为开发检测 Y. pstb 感染的诊断工具提供了有价值的见解。
Mechanistic insights into the orthogonal functionality of an AHL-mediated quorum-sensing circuit in Yersinia pseudotuberculosis
YpsR, a pivotal regulatory protein in the quorum-sensing (QS) of Yersinia pseudotuberculosis(Y. pstb), is essential for molecular signaling, yet its molecular mechanisms remain poorly understood. Herein, this study systematically investigates the interactions between YpsR and acyl-homoserine lactones (AHLs), shedding light on the selective mechanism of YpsR to various AHL molecules. Using molecular docking and surface plasmon resonance (SPR) analysis, we confirmed YpsR's binding affinities, with the strongest observed for 3OC6-HSL, which notably inhibited Y. pstb growth. Additionally, we engineered a whole-cell biosensor based on YpsR-AHL interaction, which exhibited sensitivity to the signal molecule 3OC6-HSL produced by Y. pstb. Furthermore, key YpsR residues (S32, Y50, W54, D67) involved in AHL binding were identified and validated. Overall, this research elucidates the mechanisms of QS signal recognition in Y. pstb, providing valuable insights that support the development of diagnostic tools for detecting Y. pstb infections.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.