Martin Benedikt Klaushofer, Michael Stoschka, Bernd Maier, Florian Grün
{"title":"研究具有微观结构变化的黄铜合金的断裂机械性能","authors":"Martin Benedikt Klaushofer, Michael Stoschka, Bernd Maier, Florian Grün","doi":"10.1016/j.engfracmech.2024.110564","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effect of microstructural variations on the mechanical properties of CuZn35Mn2Al1Fe1-C-GS brass alloy. Specimens taken from positions with different cooling rates in a large cast component exhibit coarse-grained (approximately 5<!--> <!-->mm) and fine-grained (approximately 1<!--> <!-->mm) microstructures. Fine-grained samples demonstrate at least a 7% increase in Ultimate Tensile Strength (UTS) and up to a 33% higher long crack threshold <span><math><mrow><mi>Δ</mi><msub><mrow><mi>K</mi></mrow><mrow><mtext>th,lc</mtext></mrow></msub></mrow></math></span>. Hardness measurements are similar between microstructures. The NASGRO model and cyclic R-curve are applied to fit crack propagation data, and fractographic analysis reveals distinct fracture mechanisms. The results indicate that a fine-grained microstructure enhances tensile strength and crack resistance, providing valuable insights for the design and maintenance of heavy machinery components made from cast brass.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"311 ","pages":"Article 110564"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of fracture mechanical properties of a brass alloy with microstructural variations\",\"authors\":\"Martin Benedikt Klaushofer, Michael Stoschka, Bernd Maier, Florian Grün\",\"doi\":\"10.1016/j.engfracmech.2024.110564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effect of microstructural variations on the mechanical properties of CuZn35Mn2Al1Fe1-C-GS brass alloy. Specimens taken from positions with different cooling rates in a large cast component exhibit coarse-grained (approximately 5<!--> <!-->mm) and fine-grained (approximately 1<!--> <!-->mm) microstructures. Fine-grained samples demonstrate at least a 7% increase in Ultimate Tensile Strength (UTS) and up to a 33% higher long crack threshold <span><math><mrow><mi>Δ</mi><msub><mrow><mi>K</mi></mrow><mrow><mtext>th,lc</mtext></mrow></msub></mrow></math></span>. Hardness measurements are similar between microstructures. The NASGRO model and cyclic R-curve are applied to fit crack propagation data, and fractographic analysis reveals distinct fracture mechanisms. The results indicate that a fine-grained microstructure enhances tensile strength and crack resistance, providing valuable insights for the design and maintenance of heavy machinery components made from cast brass.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"311 \",\"pages\":\"Article 110564\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424007276\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424007276","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Investigation of fracture mechanical properties of a brass alloy with microstructural variations
This study investigates the effect of microstructural variations on the mechanical properties of CuZn35Mn2Al1Fe1-C-GS brass alloy. Specimens taken from positions with different cooling rates in a large cast component exhibit coarse-grained (approximately 5 mm) and fine-grained (approximately 1 mm) microstructures. Fine-grained samples demonstrate at least a 7% increase in Ultimate Tensile Strength (UTS) and up to a 33% higher long crack threshold . Hardness measurements are similar between microstructures. The NASGRO model and cyclic R-curve are applied to fit crack propagation data, and fractographic analysis reveals distinct fracture mechanisms. The results indicate that a fine-grained microstructure enhances tensile strength and crack resistance, providing valuable insights for the design and maintenance of heavy machinery components made from cast brass.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.