化学工艺设计的飞跃:引入集成人工智能和 CFD 模拟的自动化框架

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-10-24 DOI:10.1016/j.compchemeng.2024.108906
Dela Quarme Gbadago , Sejin Go , Sungwon Hwang
{"title":"化学工艺设计的飞跃:引入集成人工智能和 CFD 模拟的自动化框架","authors":"Dela Quarme Gbadago ,&nbsp;Sejin Go ,&nbsp;Sungwon Hwang","doi":"10.1016/j.compchemeng.2024.108906","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the numerous possibilities of integrating AI and CFD simulations for chemical process design, researchers often rely on manual techniques, resulting in suboptimal models and time-consuming processes. To address these challenges, we propose an automated framework that combines high-fidelity AI modeling with hyperparameter optimization, automated CFD simulations using OpenFOAM, and effortless post-processing for data extraction. This framework was tested on a reactor scale-up process involving 51 different configurations for butadiene synthesis, achieving 98.8 % accuracy in CFD validation and over 99 % accuracy in AI models. The automation pipeline streamlines geometry generation, meshing, simulation, data extraction, and AI-driven optimization, significantly reducing manual effort. Our framework is versatile, customizable for various types of process equipment design, and employs open-source software for ease of adoption and reproducibility. This approach not only enhances accuracy and efficiency but also opens up AI and CFD integration to a broader range of researchers.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108906"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A leap forward in chemical process design: Introducing an automated framework for integrated AI and CFD simulations\",\"authors\":\"Dela Quarme Gbadago ,&nbsp;Sejin Go ,&nbsp;Sungwon Hwang\",\"doi\":\"10.1016/j.compchemeng.2024.108906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the numerous possibilities of integrating AI and CFD simulations for chemical process design, researchers often rely on manual techniques, resulting in suboptimal models and time-consuming processes. To address these challenges, we propose an automated framework that combines high-fidelity AI modeling with hyperparameter optimization, automated CFD simulations using OpenFOAM, and effortless post-processing for data extraction. This framework was tested on a reactor scale-up process involving 51 different configurations for butadiene synthesis, achieving 98.8 % accuracy in CFD validation and over 99 % accuracy in AI models. The automation pipeline streamlines geometry generation, meshing, simulation, data extraction, and AI-driven optimization, significantly reducing manual effort. Our framework is versatile, customizable for various types of process equipment design, and employs open-source software for ease of adoption and reproducibility. This approach not only enhances accuracy and efficiency but also opens up AI and CFD integration to a broader range of researchers.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108906\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003247\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003247","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尽管将人工智能和 CFD 模拟集成到化学工艺设计中具有多种可能性,但研究人员往往依赖于人工技术,从而导致模型不理想和过程耗时。为了应对这些挑战,我们提出了一个自动化框架,它将高保真人工智能建模与超参数优化、使用 OpenFOAM 的自动 CFD 模拟以及轻松的数据提取后处理结合在一起。该框架在一个涉及 51 种不同丁二烯合成配置的反应器放大过程中进行了测试,其 CFD 验证准确率达到 98.8%,AI 模型准确率超过 99%。自动化管道简化了几何生成、网格划分、模拟、数据提取和人工智能驱动的优化过程,大大减少了人工操作。我们的框架用途广泛,可针对各种类型的工艺设备设计进行定制,并采用开源软件,便于采用和复制。这种方法不仅提高了准确性和效率,还向更多研究人员开放了人工智能和 CFD 集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A leap forward in chemical process design: Introducing an automated framework for integrated AI and CFD simulations
Despite the numerous possibilities of integrating AI and CFD simulations for chemical process design, researchers often rely on manual techniques, resulting in suboptimal models and time-consuming processes. To address these challenges, we propose an automated framework that combines high-fidelity AI modeling with hyperparameter optimization, automated CFD simulations using OpenFOAM, and effortless post-processing for data extraction. This framework was tested on a reactor scale-up process involving 51 different configurations for butadiene synthesis, achieving 98.8 % accuracy in CFD validation and over 99 % accuracy in AI models. The automation pipeline streamlines geometry generation, meshing, simulation, data extraction, and AI-driven optimization, significantly reducing manual effort. Our framework is versatile, customizable for various types of process equipment design, and employs open-source software for ease of adoption and reproducibility. This approach not only enhances accuracy and efficiency but also opens up AI and CFD integration to a broader range of researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1