智能 SDN 提高物联网网络的安全性

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-10-30 DOI:10.1016/j.eij.2024.100564
Safi Ibrahim , Aya M. Youssef , Mahmoud Shoman , Sanaa Taha
{"title":"智能 SDN 提高物联网网络的安全性","authors":"Safi Ibrahim ,&nbsp;Aya M. Youssef ,&nbsp;Mahmoud Shoman ,&nbsp;Sanaa Taha","doi":"10.1016/j.eij.2024.100564","DOIUrl":null,"url":null,"abstract":"<div><div>Software-defined networking (SDN) is a revolutionary technology that has revolutionised network management by providing flexibility and adaptability. As the popularity of SDN increases, it is crucial to address security vulnerabilities in these dynamic networks. This paper proposes a framework for enhancing security in SDN by utilising three separate Deep Learning models, namely Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). This framework is utilised for the InSDN dataset, a huge dataset specifically created for SDN security research. The dataset consists of a total of 343,939 instances, encompassing both normal and attack traffic. The regular data yields a sum of 68,424, whereas the attack traffic comprises 275,515 occurrences. This study employs multiclassification algorithms to precisely detect and categorise diverse security threats in SDN. The InSDN dataset faces issues related to class imbalance, which are addressed by using the Synthetic Minority Over-sampling Technique (SMOTE). The SMOTE technique is utilised to create artificial instances of the underrepresented class, hence achieving a more equitable distribution of security hazards within the dataset. This strategy improves the efficacy of multiclassification techniques, ultimately resulting in greater accuracy in the identification and classification of different security threats in SDN environments. The initial DNN model exhibited satisfactory performance, with an accuracy of 87%. The second CNN model demonstrated strong and consistent performance, with an accuracy rate of 99%. In addition, an LSTM model attained a 90% accuracy rate.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100564"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent SDN to enhance security in IoT networks\",\"authors\":\"Safi Ibrahim ,&nbsp;Aya M. Youssef ,&nbsp;Mahmoud Shoman ,&nbsp;Sanaa Taha\",\"doi\":\"10.1016/j.eij.2024.100564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Software-defined networking (SDN) is a revolutionary technology that has revolutionised network management by providing flexibility and adaptability. As the popularity of SDN increases, it is crucial to address security vulnerabilities in these dynamic networks. This paper proposes a framework for enhancing security in SDN by utilising three separate Deep Learning models, namely Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). This framework is utilised for the InSDN dataset, a huge dataset specifically created for SDN security research. The dataset consists of a total of 343,939 instances, encompassing both normal and attack traffic. The regular data yields a sum of 68,424, whereas the attack traffic comprises 275,515 occurrences. This study employs multiclassification algorithms to precisely detect and categorise diverse security threats in SDN. The InSDN dataset faces issues related to class imbalance, which are addressed by using the Synthetic Minority Over-sampling Technique (SMOTE). The SMOTE technique is utilised to create artificial instances of the underrepresented class, hence achieving a more equitable distribution of security hazards within the dataset. This strategy improves the efficacy of multiclassification techniques, ultimately resulting in greater accuracy in the identification and classification of different security threats in SDN environments. The initial DNN model exhibited satisfactory performance, with an accuracy of 87%. The second CNN model demonstrated strong and consistent performance, with an accuracy rate of 99%. In addition, an LSTM model attained a 90% accuracy rate.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"28 \",\"pages\":\"Article 100564\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524001270\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001270","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

软件定义网络(SDN)是一项革命性技术,通过提供灵活性和适应性彻底改变了网络管理。随着 SDN 的普及,解决这些动态网络中的安全漏洞至关重要。本文提出了一个框架,通过利用三个独立的深度学习模型(即深度神经网络(DNN)、卷积神经网络(CNN)和长短期记忆(LSTM))来增强 SDN 的安全性。该框架用于 InSDN 数据集,这是一个专为 SDN 安全研究而创建的庞大数据集。该数据集由 343,939 个实例组成,包括正常流量和攻击流量。正常数据的总和为 68,424 次,而攻击流量包括 275,515 次。本研究采用了多分类算法来精确检测和分类 SDN 中的各种安全威胁。InSDN 数据集面临着与类不平衡相关的问题,通过使用合成少数群体过度采样技术(SMOTE)解决了这些问题。SMOTE 技术用于创建代表性不足类别的人工实例,从而在数据集中实现更公平的安全隐患分布。这一策略提高了多分类技术的功效,最终提高了在 SDN 环境中识别和分类不同安全威胁的准确性。最初的 DNN 模型表现令人满意,准确率达到 87%。第二个 CNN 模型表现出强大而稳定的性能,准确率达到 99%。此外,LSTM 模型的准确率也达到了 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent SDN to enhance security in IoT networks
Software-defined networking (SDN) is a revolutionary technology that has revolutionised network management by providing flexibility and adaptability. As the popularity of SDN increases, it is crucial to address security vulnerabilities in these dynamic networks. This paper proposes a framework for enhancing security in SDN by utilising three separate Deep Learning models, namely Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). This framework is utilised for the InSDN dataset, a huge dataset specifically created for SDN security research. The dataset consists of a total of 343,939 instances, encompassing both normal and attack traffic. The regular data yields a sum of 68,424, whereas the attack traffic comprises 275,515 occurrences. This study employs multiclassification algorithms to precisely detect and categorise diverse security threats in SDN. The InSDN dataset faces issues related to class imbalance, which are addressed by using the Synthetic Minority Over-sampling Technique (SMOTE). The SMOTE technique is utilised to create artificial instances of the underrepresented class, hence achieving a more equitable distribution of security hazards within the dataset. This strategy improves the efficacy of multiclassification techniques, ultimately resulting in greater accuracy in the identification and classification of different security threats in SDN environments. The initial DNN model exhibited satisfactory performance, with an accuracy of 87%. The second CNN model demonstrated strong and consistent performance, with an accuracy rate of 99%. In addition, an LSTM model attained a 90% accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
Multistep prediction for egg prices: An efficient sequence-to-sequence network A multi-objective fuzzy model based on enhanced artificial fish Swarm for multiple RNA sequences alignment A road lane detection approach based on reformer model Advanced segmentation method for integrating multi-omics data for early cancer detection Innovation of teaching mechanism of music course integrating artificial intelligence technology: ITMMCAI-MCA-ACNN approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1