{"title":"可持续糠醛双硫醇基苯并噁嗪:超疏水、聚集诱导发射和耐腐蚀特性","authors":"Mohamed Mydeen K, Balaji Krishnasamy, Aishwarya Rajamani, Alagar Muthukaruppan","doi":"10.1016/j.molstruc.2024.140495","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainable bis-thymol based benzoxazines have been synthesized using furfural bis-thymol (FBT) and paraformaldehyde separately with five different fluorine substituted amines through Mannich condensation process. The molecular structure of the obtained benzoxazines has been verified using spectroscopic analyses. The curing temperature of the synthesized benzoxazines are ranged between 241 °C and 277 °C. Among the synthesized polybenzoxazines, poly(FBT-pfa) exhibits the highest thermal stability of 52 % char yield. All the polybenzoxazines exhibit the value of LOI above the threshold limit of 26 which infers the self-extinguishing property of the polymer. Poly(FBT-pfsa) showed the highest value of water contact angle of 151°, which ascertains that the increased fluorine content contributes to the superhydrophobic nature. Results from hydrophobic durability studies with poly(FBT-pfsa) using coated cotton fabric under acidic and basic conditions indicate its suitability for hydrophobic applications. The corrosion protection ability of polybenzoxazines towards mild steel surfaces was studied and the results obtained suggest that these polybenzoxazines can be used as an excellent coating material. UV–Visible and fluorescence spectroscopic analyses infer that these benzoxazines exhibit aggregation induced emission (AIE) characteristics. Data from different studies suggest that these materials can be conveniently utilized in the form of optical, superhydrophobic and corrosion-resistant coatings.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable furfural bis-thymol based benzoxazines: Superhydrophobic, aggregation induced emission and corrosion resistant properties\",\"authors\":\"Mohamed Mydeen K, Balaji Krishnasamy, Aishwarya Rajamani, Alagar Muthukaruppan\",\"doi\":\"10.1016/j.molstruc.2024.140495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sustainable bis-thymol based benzoxazines have been synthesized using furfural bis-thymol (FBT) and paraformaldehyde separately with five different fluorine substituted amines through Mannich condensation process. The molecular structure of the obtained benzoxazines has been verified using spectroscopic analyses. The curing temperature of the synthesized benzoxazines are ranged between 241 °C and 277 °C. Among the synthesized polybenzoxazines, poly(FBT-pfa) exhibits the highest thermal stability of 52 % char yield. All the polybenzoxazines exhibit the value of LOI above the threshold limit of 26 which infers the self-extinguishing property of the polymer. Poly(FBT-pfsa) showed the highest value of water contact angle of 151°, which ascertains that the increased fluorine content contributes to the superhydrophobic nature. Results from hydrophobic durability studies with poly(FBT-pfsa) using coated cotton fabric under acidic and basic conditions indicate its suitability for hydrophobic applications. The corrosion protection ability of polybenzoxazines towards mild steel surfaces was studied and the results obtained suggest that these polybenzoxazines can be used as an excellent coating material. UV–Visible and fluorescence spectroscopic analyses infer that these benzoxazines exhibit aggregation induced emission (AIE) characteristics. Data from different studies suggest that these materials can be conveniently utilized in the form of optical, superhydrophobic and corrosion-resistant coatings.</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286024030035\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024030035","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sustainable furfural bis-thymol based benzoxazines: Superhydrophobic, aggregation induced emission and corrosion resistant properties
Sustainable bis-thymol based benzoxazines have been synthesized using furfural bis-thymol (FBT) and paraformaldehyde separately with five different fluorine substituted amines through Mannich condensation process. The molecular structure of the obtained benzoxazines has been verified using spectroscopic analyses. The curing temperature of the synthesized benzoxazines are ranged between 241 °C and 277 °C. Among the synthesized polybenzoxazines, poly(FBT-pfa) exhibits the highest thermal stability of 52 % char yield. All the polybenzoxazines exhibit the value of LOI above the threshold limit of 26 which infers the self-extinguishing property of the polymer. Poly(FBT-pfsa) showed the highest value of water contact angle of 151°, which ascertains that the increased fluorine content contributes to the superhydrophobic nature. Results from hydrophobic durability studies with poly(FBT-pfsa) using coated cotton fabric under acidic and basic conditions indicate its suitability for hydrophobic applications. The corrosion protection ability of polybenzoxazines towards mild steel surfaces was studied and the results obtained suggest that these polybenzoxazines can be used as an excellent coating material. UV–Visible and fluorescence spectroscopic analyses infer that these benzoxazines exhibit aggregation induced emission (AIE) characteristics. Data from different studies suggest that these materials can be conveniently utilized in the form of optical, superhydrophobic and corrosion-resistant coatings.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.