David J. Lusher , Andrea Sansica , Neil D. Sandham , Jianping Meng , Bálint Siklósi , Atsushi Hashimoto
{"title":"OpenSBLI v3.0:在 GPU 上使用特定领域语言进行高保真多区块跨声速气流箔 CFD 仿真","authors":"David J. Lusher , Andrea Sansica , Neil D. Sandham , Jianping Meng , Bálint Siklósi , Atsushi Hashimoto","doi":"10.1016/j.cpc.2024.109406","DOIUrl":null,"url":null,"abstract":"<div><div>OpenSBLI is an automatic code-generation framework for compressible Computational Fluid Dynamics (CFD) simulations on heterogeneous computing architectures (previous release: Lusher et al. (2021) <span><span>[4]</span></span>). OpenSBLI is coupled to the Oxford Parallel Structured (OPS) Domain Specific Language (DSL), which uses source-to-source translation to enable parallel execution of the code on large-scale supercomputers, including multi-GPU clusters. To date, OpenSBLI has largely been applied to compressible turbulence and shock-wave/boundary-layer interactions on very simple geometries comprised of single mesh blocks with essentially orthogonal grid lines. OpenSBLI has been extended in this new release to target strongly curvilinear cases, including transonic aerofoils using multi-block grids. In addition to multi-block mesh support, more efficient numerical shock-capturing methods and filters have been added to the codebase. Improvements to post-processing, reduced-dimension data output, and coupling to a modal decomposition library are also included. A set of validation cases are presented to showcase the new code features. Furthermore, state-of-the-art wide-span transonic aerofoil simulations on up to <span><math><mi>N</mi><mo>=</mo><mn>2.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup></math></span> grid points demonstrate that wider aspect ratios can alter buffet predictions and increase the regularity of the low-frequency shock oscillations by accommodating fully-developed trailing edge flow separation. Spectral Proper Orthogonal Decomposition (SPOD) analysis showed that overly-narrow aerofoil simulations contain additional domain-dependent energy content at a Strouhal number of <span><math><mi>S</mi><mi>t</mi><mo>≈</mo><mn>3</mn></math></span> associated with wake modes.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109406"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenSBLI v3.0: High-fidelity multi-block transonic aerofoil CFD simulations using domain specific languages on GPUs\",\"authors\":\"David J. Lusher , Andrea Sansica , Neil D. Sandham , Jianping Meng , Bálint Siklósi , Atsushi Hashimoto\",\"doi\":\"10.1016/j.cpc.2024.109406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>OpenSBLI is an automatic code-generation framework for compressible Computational Fluid Dynamics (CFD) simulations on heterogeneous computing architectures (previous release: Lusher et al. (2021) <span><span>[4]</span></span>). OpenSBLI is coupled to the Oxford Parallel Structured (OPS) Domain Specific Language (DSL), which uses source-to-source translation to enable parallel execution of the code on large-scale supercomputers, including multi-GPU clusters. To date, OpenSBLI has largely been applied to compressible turbulence and shock-wave/boundary-layer interactions on very simple geometries comprised of single mesh blocks with essentially orthogonal grid lines. OpenSBLI has been extended in this new release to target strongly curvilinear cases, including transonic aerofoils using multi-block grids. In addition to multi-block mesh support, more efficient numerical shock-capturing methods and filters have been added to the codebase. Improvements to post-processing, reduced-dimension data output, and coupling to a modal decomposition library are also included. A set of validation cases are presented to showcase the new code features. Furthermore, state-of-the-art wide-span transonic aerofoil simulations on up to <span><math><mi>N</mi><mo>=</mo><mn>2.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup></math></span> grid points demonstrate that wider aspect ratios can alter buffet predictions and increase the regularity of the low-frequency shock oscillations by accommodating fully-developed trailing edge flow separation. Spectral Proper Orthogonal Decomposition (SPOD) analysis showed that overly-narrow aerofoil simulations contain additional domain-dependent energy content at a Strouhal number of <span><math><mi>S</mi><mi>t</mi><mo>≈</mo><mn>3</mn></math></span> associated with wake modes.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"307 \",\"pages\":\"Article 109406\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003291\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003291","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
OpenSBLI v3.0: High-fidelity multi-block transonic aerofoil CFD simulations using domain specific languages on GPUs
OpenSBLI is an automatic code-generation framework for compressible Computational Fluid Dynamics (CFD) simulations on heterogeneous computing architectures (previous release: Lusher et al. (2021) [4]). OpenSBLI is coupled to the Oxford Parallel Structured (OPS) Domain Specific Language (DSL), which uses source-to-source translation to enable parallel execution of the code on large-scale supercomputers, including multi-GPU clusters. To date, OpenSBLI has largely been applied to compressible turbulence and shock-wave/boundary-layer interactions on very simple geometries comprised of single mesh blocks with essentially orthogonal grid lines. OpenSBLI has been extended in this new release to target strongly curvilinear cases, including transonic aerofoils using multi-block grids. In addition to multi-block mesh support, more efficient numerical shock-capturing methods and filters have been added to the codebase. Improvements to post-processing, reduced-dimension data output, and coupling to a modal decomposition library are also included. A set of validation cases are presented to showcase the new code features. Furthermore, state-of-the-art wide-span transonic aerofoil simulations on up to grid points demonstrate that wider aspect ratios can alter buffet predictions and increase the regularity of the low-frequency shock oscillations by accommodating fully-developed trailing edge flow separation. Spectral Proper Orthogonal Decomposition (SPOD) analysis showed that overly-narrow aerofoil simulations contain additional domain-dependent energy content at a Strouhal number of associated with wake modes.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.