Carlos E. Cardenas, Rex A. Cardan, Joseph Harms, Eric Simiele, Richard A. Popple
{"title":"基于知识的规划、多标准优化和计划记分卡:制胜组合","authors":"Carlos E. Cardenas, Rex A. Cardan, Joseph Harms, Eric Simiele, Richard A. Popple","doi":"10.1016/j.radonc.2024.110598","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>The ESTRO 2023 Physics Workshop hosted the Fully-Automated Radiotherapy Treatment Planning (Auto-RTP) Challenge, where participants were provided with CT images from 16 prostate cancer patients (6 prostate only, 6 prostate + nodes, and 4 prostate bed + nodes) across 3 challenge phases with the goal of automatically generating treatment plans with minimal user intervention. Here, we present our team’s winning approach developed to swiftly adapt to both different contouring guidelines and treatment prescriptions than those used in our clinic.</div></div><div><h3>Materials and methods</h3><div>Our planning pipeline comprises two main components: 1) auto-contouring and 2) auto-planning engines, both internally developed and activated via DICOM operations. The auto-contouring engine employs 3D U-Net models trained on a dataset of 600 prostate cancer patients for normal tissues, 253 cases for pelvic lymph node, and 32 cases for prostate bed. The auto-planning engine, utilizing the Eclipse Scripting Application Programming Interface, automates target volume definition, field geometry, planning parameters, optimization, and dose calculation. RapidPlan models, combined with multicriteria optimization and scorecards defined on challenge scoring criteria, were employed to ensure plans met challenge objectives. We report leaderboard scores (0–100, where 100 is a perfect score) which combine organ-at-risk and target dose-metrics on the provided cases.</div></div><div><h3>Results</h3><div>Our team secured 1st place across all three challenge phases, achieving leaderboard scores of 79.9, 77.3, and 78.5 outperforming 2nd place scores by margins of 6.4, 0.4, and 2.9 points for each phase, respectively. Highest plan scores were for prostate only cases, with an average score exceeding 90. Upon challenge completion, a “Plan Only” phase was opened where organizers provided contours for planning. Our current score of 90.0 places us at the top of the “Plan Only” leaderboard.</div></div><div><h3>Conclusions</h3><div>Our automated pipeline demonstrates adaptability to diverse guidelines, indicating progress towards fully automated radiotherapy planning. Future studies are needed to assess the clinical acceptability and integration of automatically generated plans.</div></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":"202 ","pages":"Article 110598"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-based planning, multicriteria optimization, and plan scorecards: A winning combination\",\"authors\":\"Carlos E. Cardenas, Rex A. Cardan, Joseph Harms, Eric Simiele, Richard A. Popple\",\"doi\":\"10.1016/j.radonc.2024.110598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>The ESTRO 2023 Physics Workshop hosted the Fully-Automated Radiotherapy Treatment Planning (Auto-RTP) Challenge, where participants were provided with CT images from 16 prostate cancer patients (6 prostate only, 6 prostate + nodes, and 4 prostate bed + nodes) across 3 challenge phases with the goal of automatically generating treatment plans with minimal user intervention. Here, we present our team’s winning approach developed to swiftly adapt to both different contouring guidelines and treatment prescriptions than those used in our clinic.</div></div><div><h3>Materials and methods</h3><div>Our planning pipeline comprises two main components: 1) auto-contouring and 2) auto-planning engines, both internally developed and activated via DICOM operations. The auto-contouring engine employs 3D U-Net models trained on a dataset of 600 prostate cancer patients for normal tissues, 253 cases for pelvic lymph node, and 32 cases for prostate bed. The auto-planning engine, utilizing the Eclipse Scripting Application Programming Interface, automates target volume definition, field geometry, planning parameters, optimization, and dose calculation. RapidPlan models, combined with multicriteria optimization and scorecards defined on challenge scoring criteria, were employed to ensure plans met challenge objectives. We report leaderboard scores (0–100, where 100 is a perfect score) which combine organ-at-risk and target dose-metrics on the provided cases.</div></div><div><h3>Results</h3><div>Our team secured 1st place across all three challenge phases, achieving leaderboard scores of 79.9, 77.3, and 78.5 outperforming 2nd place scores by margins of 6.4, 0.4, and 2.9 points for each phase, respectively. Highest plan scores were for prostate only cases, with an average score exceeding 90. Upon challenge completion, a “Plan Only” phase was opened where organizers provided contours for planning. Our current score of 90.0 places us at the top of the “Plan Only” leaderboard.</div></div><div><h3>Conclusions</h3><div>Our automated pipeline demonstrates adaptability to diverse guidelines, indicating progress towards fully automated radiotherapy planning. Future studies are needed to assess the clinical acceptability and integration of automatically generated plans.</div></div>\",\"PeriodicalId\":21041,\"journal\":{\"name\":\"Radiotherapy and Oncology\",\"volume\":\"202 \",\"pages\":\"Article 110598\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiotherapy and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167814024042609\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814024042609","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Knowledge-based planning, multicriteria optimization, and plan scorecards: A winning combination
Background and purpose
The ESTRO 2023 Physics Workshop hosted the Fully-Automated Radiotherapy Treatment Planning (Auto-RTP) Challenge, where participants were provided with CT images from 16 prostate cancer patients (6 prostate only, 6 prostate + nodes, and 4 prostate bed + nodes) across 3 challenge phases with the goal of automatically generating treatment plans with minimal user intervention. Here, we present our team’s winning approach developed to swiftly adapt to both different contouring guidelines and treatment prescriptions than those used in our clinic.
Materials and methods
Our planning pipeline comprises two main components: 1) auto-contouring and 2) auto-planning engines, both internally developed and activated via DICOM operations. The auto-contouring engine employs 3D U-Net models trained on a dataset of 600 prostate cancer patients for normal tissues, 253 cases for pelvic lymph node, and 32 cases for prostate bed. The auto-planning engine, utilizing the Eclipse Scripting Application Programming Interface, automates target volume definition, field geometry, planning parameters, optimization, and dose calculation. RapidPlan models, combined with multicriteria optimization and scorecards defined on challenge scoring criteria, were employed to ensure plans met challenge objectives. We report leaderboard scores (0–100, where 100 is a perfect score) which combine organ-at-risk and target dose-metrics on the provided cases.
Results
Our team secured 1st place across all three challenge phases, achieving leaderboard scores of 79.9, 77.3, and 78.5 outperforming 2nd place scores by margins of 6.4, 0.4, and 2.9 points for each phase, respectively. Highest plan scores were for prostate only cases, with an average score exceeding 90. Upon challenge completion, a “Plan Only” phase was opened where organizers provided contours for planning. Our current score of 90.0 places us at the top of the “Plan Only” leaderboard.
Conclusions
Our automated pipeline demonstrates adaptability to diverse guidelines, indicating progress towards fully automated radiotherapy planning. Future studies are needed to assess the clinical acceptability and integration of automatically generated plans.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.