Xinyi Liu , Ming Wu , Ke Gong , Dongxu Sun , Xu Wang , Jin Li , Jin Du , Jacob C. Huang
{"title":"观察腐蚀性海水环境中管道钢的应力腐蚀开裂情况,包括详细观察裂纹的形成机制","authors":"Xinyi Liu , Ming Wu , Ke Gong , Dongxu Sun , Xu Wang , Jin Li , Jin Du , Jacob C. Huang","doi":"10.1016/j.jelechem.2024.118743","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of stress concentration on crack initiation and propagation during stress corrosion cracking of carbon steel in alternate wet and dry marine condition was studied by constant load tensile and microelectrochemical test. Results showed that the notch front does not crack but pitting occurs in the corrosion process under load-free condition. Under the loading condition, the anodic dissolution (AD) near the notch gradually intensified, and this effect become severer with increasing load. The local environment of the load-induced rapid AD and hydrogen evolution (HE) can lead to crack initiation, indicating that the joint action of AD and HE is the main SCC mechanism.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"975 ","pages":"Article 118743"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations of stress corrosion cracking in pipeline steel in corrosive seawater environment including detailed observation of the crack initiation mechanism\",\"authors\":\"Xinyi Liu , Ming Wu , Ke Gong , Dongxu Sun , Xu Wang , Jin Li , Jin Du , Jacob C. Huang\",\"doi\":\"10.1016/j.jelechem.2024.118743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of stress concentration on crack initiation and propagation during stress corrosion cracking of carbon steel in alternate wet and dry marine condition was studied by constant load tensile and microelectrochemical test. Results showed that the notch front does not crack but pitting occurs in the corrosion process under load-free condition. Under the loading condition, the anodic dissolution (AD) near the notch gradually intensified, and this effect become severer with increasing load. The local environment of the load-induced rapid AD and hydrogen evolution (HE) can lead to crack initiation, indicating that the joint action of AD and HE is the main SCC mechanism.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"975 \",\"pages\":\"Article 118743\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007215\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007215","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Observations of stress corrosion cracking in pipeline steel in corrosive seawater environment including detailed observation of the crack initiation mechanism
The effect of stress concentration on crack initiation and propagation during stress corrosion cracking of carbon steel in alternate wet and dry marine condition was studied by constant load tensile and microelectrochemical test. Results showed that the notch front does not crack but pitting occurs in the corrosion process under load-free condition. Under the loading condition, the anodic dissolution (AD) near the notch gradually intensified, and this effect become severer with increasing load. The local environment of the load-induced rapid AD and hydrogen evolution (HE) can lead to crack initiation, indicating that the joint action of AD and HE is the main SCC mechanism.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.