高性能 Ceph 存储系统的高效安全接口

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2024-10-23 DOI:10.1016/j.future.2024.107571
{"title":"高性能 Ceph 存储系统的高效安全接口","authors":"","doi":"10.1016/j.future.2024.107571","DOIUrl":null,"url":null,"abstract":"<div><div>Ceph portrays a resilient clustered storage solution with supporting object, block, and file storage capabilities with no single point of failure. Despite these qualifications, data confidentiality defines a concern in the system, as authentication and access control are the only data protection security services in Ceph. CephArmor was proposed as a third-party security interface to protect data confidentiality by adding an extra protection layer to data at rest. Despite the added layer, the initial design of the API needed to be more efficient in addressing security and performance simultaneously. In this study, we propose a new architectural design to address the associated issues with the preliminary prototype. Comprehensive performance and security analysis verify the improvement of the proposed method compared to the initial approach. The benchmark result has indicated a 37% improvement on average in IOPS, elapsed time, and bandwidth for the <em>write</em> benchmark compared to the initial model.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient security interface for high-performance Ceph storage systems\",\"authors\":\"\",\"doi\":\"10.1016/j.future.2024.107571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ceph portrays a resilient clustered storage solution with supporting object, block, and file storage capabilities with no single point of failure. Despite these qualifications, data confidentiality defines a concern in the system, as authentication and access control are the only data protection security services in Ceph. CephArmor was proposed as a third-party security interface to protect data confidentiality by adding an extra protection layer to data at rest. Despite the added layer, the initial design of the API needed to be more efficient in addressing security and performance simultaneously. In this study, we propose a new architectural design to address the associated issues with the preliminary prototype. Comprehensive performance and security analysis verify the improvement of the proposed method compared to the initial approach. The benchmark result has indicated a 37% improvement on average in IOPS, elapsed time, and bandwidth for the <em>write</em> benchmark compared to the initial model.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005351\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005351","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Ceph 是一种弹性集群存储解决方案,支持对象、块和文件存储功能,没有单点故障。尽管有这些优点,但数据保密性仍是系统中的一个问题,因为身份验证和访问控制是 Ceph 中唯一的数据保护安全服务。CephArmor 被提议作为第三方安全接口,通过为静态数据添加额外的保护层来保护数据的机密性。尽管增加了保护层,但最初设计的 API 需要更有效地同时解决安全性和性能问题。在本研究中,我们提出了一种新的架构设计,以解决与初步原型相关的问题。全面的性能和安全分析验证了与最初的方法相比,所提出的方法有所改进。基准结果表明,与初始模型相比,写入基准的 IOPS、耗时和带宽平均提高了 37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient security interface for high-performance Ceph storage systems
Ceph portrays a resilient clustered storage solution with supporting object, block, and file storage capabilities with no single point of failure. Despite these qualifications, data confidentiality defines a concern in the system, as authentication and access control are the only data protection security services in Ceph. CephArmor was proposed as a third-party security interface to protect data confidentiality by adding an extra protection layer to data at rest. Despite the added layer, the initial design of the API needed to be more efficient in addressing security and performance simultaneously. In this study, we propose a new architectural design to address the associated issues with the preliminary prototype. Comprehensive performance and security analysis verify the improvement of the proposed method compared to the initial approach. The benchmark result has indicated a 37% improvement on average in IOPS, elapsed time, and bandwidth for the write benchmark compared to the initial model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
SWIM: Sliding-Window Model contrast for federated learning Heterogeneous system list scheduling algorithm based on improved optimistic cost matrix The Fast Inertial ADMM optimization framework for distributed machine learning Review of deep learning-based pathological image classification: From task-specific models to foundation models Learning protein language contrastive models with multi-knowledge representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1