用于芳基硼酸和 N-苯基四氢异喹啉光催化氧化反应的 I 型碳点光敏剂

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-10-21 DOI:10.1016/j.mcat.2024.114625
Zhong-Lin Guo , Kai-kai Niu , Yu-Guang Lv , Ling-Bao Xing
{"title":"用于芳基硼酸和 N-苯基四氢异喹啉光催化氧化反应的 I 型碳点光敏剂","authors":"Zhong-Lin Guo ,&nbsp;Kai-kai Niu ,&nbsp;Yu-Guang Lv ,&nbsp;Ling-Bao Xing","doi":"10.1016/j.mcat.2024.114625","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dots (CDs) have emerged as promising materials for photocatalytic organic transformations due to their excellent photostability, tunable electronic properties, and environmental friendliness; However, the ability of CDs to selectively generate reactive oxygen species (ROS) and its integration with organic photocatalytic synthesis applications has always been a long-term challenge. In this work, we synthesized a new nitrogen and phosphorus co-doped carbon dots (N,P-CDs) with enhanced light absorption and notable efficiency in generating superoxide anion (O<sub>2</sub><sup>•−</sup>) selectively. Leveraging the selective generation of superoxide anions, we achieved highly efficient photooxidation of boronic acids and N-phenyl tetrahydroisoquinolines, demonstrating the practical applicability of N,P-CDs as photocatalysts and represents good functional-group tolerance as well as a broad substrate scope. This study provides valuable insights into the design of carbon-based photocatalysts with controlled ROS generation, opening new avenues for environmentally benign organic transformations.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114625"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon dot-based type I photosensitizers for photocatalytic oxidation reaction of arylboric acid and N-phenyl tetrahydroisoquinoline\",\"authors\":\"Zhong-Lin Guo ,&nbsp;Kai-kai Niu ,&nbsp;Yu-Guang Lv ,&nbsp;Ling-Bao Xing\",\"doi\":\"10.1016/j.mcat.2024.114625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon dots (CDs) have emerged as promising materials for photocatalytic organic transformations due to their excellent photostability, tunable electronic properties, and environmental friendliness; However, the ability of CDs to selectively generate reactive oxygen species (ROS) and its integration with organic photocatalytic synthesis applications has always been a long-term challenge. In this work, we synthesized a new nitrogen and phosphorus co-doped carbon dots (N,P-CDs) with enhanced light absorption and notable efficiency in generating superoxide anion (O<sub>2</sub><sup>•−</sup>) selectively. Leveraging the selective generation of superoxide anions, we achieved highly efficient photooxidation of boronic acids and N-phenyl tetrahydroisoquinolines, demonstrating the practical applicability of N,P-CDs as photocatalysts and represents good functional-group tolerance as well as a broad substrate scope. This study provides valuable insights into the design of carbon-based photocatalysts with controlled ROS generation, opening new avenues for environmentally benign organic transformations.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114625\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124008071\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008071","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳点(CD)因其优异的光稳定性、可调的电子特性和环境友好性,已成为光催化有机转化的理想材料;然而,碳点选择性生成活性氧(ROS)的能力及其与有机光催化合成应用的结合一直是一个长期的挑战。在这项工作中,我们合成了一种新的氮磷共掺杂碳点(N,P-CDs),它具有更强的光吸收能力和选择性生成超氧阴离子(O2--)的显著效率。利用超氧阴离子的选择性生成,我们实现了硼酸和 N-苯基四氢异喹啉的高效光氧化,证明了 N,P-CDs 作为光催化剂的实用性,并代表了良好的官能团耐受性和广泛的底物范围。这项研究为设计可控 ROS 生成的碳基光催化剂提供了宝贵的见解,为环境无害的有机转化开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon dot-based type I photosensitizers for photocatalytic oxidation reaction of arylboric acid and N-phenyl tetrahydroisoquinoline
Carbon dots (CDs) have emerged as promising materials for photocatalytic organic transformations due to their excellent photostability, tunable electronic properties, and environmental friendliness; However, the ability of CDs to selectively generate reactive oxygen species (ROS) and its integration with organic photocatalytic synthesis applications has always been a long-term challenge. In this work, we synthesized a new nitrogen and phosphorus co-doped carbon dots (N,P-CDs) with enhanced light absorption and notable efficiency in generating superoxide anion (O2•−) selectively. Leveraging the selective generation of superoxide anions, we achieved highly efficient photooxidation of boronic acids and N-phenyl tetrahydroisoquinolines, demonstrating the practical applicability of N,P-CDs as photocatalysts and represents good functional-group tolerance as well as a broad substrate scope. This study provides valuable insights into the design of carbon-based photocatalysts with controlled ROS generation, opening new avenues for environmentally benign organic transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid Spiro-linked hanging group cobalt phthalocyanine for CO2-to-methanol electrocatalysis unveiled by grand canonical density functional theory On the Mechanism of Acrylate and Propionate Silyl Esters Synthesis by Ruthenium-Catalyzed Coupling of CO2 with C2H4 in the Presence of Hydrosilanes: Combined Experimental and Computational Investigations Light alkanes dehydrogenation over silica supported gallium catalysts Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1