刚柔结合结构的机械性能:应用于浮动光伏平台的铝充气膜梁

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2024-10-26 DOI:10.1016/j.tws.2024.112628
Yunling Ye , Jin Gan , Weiguo Wu , Shan Wang , C. Guedes Soares
{"title":"刚柔结合结构的机械性能:应用于浮动光伏平台的铝充气膜梁","authors":"Yunling Ye ,&nbsp;Jin Gan ,&nbsp;Weiguo Wu ,&nbsp;Shan Wang ,&nbsp;C. Guedes Soares","doi":"10.1016/j.tws.2024.112628","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the bending and failure behaviour of aluminium-inflated membrane beams for their applications in floating photovoltaic platforms. Four-point bending tests are conducted for a range of inflated pressures and two different deck heights to assess their effect on structural stiffness and ultimate bearing capacity. Meanwhile, the surface-based fluid cavity method is employed to develop the finite element model with the material properties determined by independent coupon-level tests. The bearing capacity of the aluminium-inflated membrane beam is positively correlated with the internal pressure and deck height. The midspan strain distribution is similar to those of the traditional four-point bending beam with the upper part undergoing compression and the lower part experiencing tension, however, the structural behaviour at the failure stage is different. Failure typically occurs due to localised depressions at the loading points on the aluminium deck, ultimately leading to structural failure. The numerical model closely matches the experimental data for the initial inflated and bending configurations, exhibiting a deviation of only 0.10 % to 0.46 % in diameter and 0.32 % to 5.57 % in equivalent bending stiffness. A parametric study shows that the loading properties of the beam are more sensitive to the internal pressure than the deck height and thickness.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112628"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical behaviour of rigid-flexible combined structures: Aluminium-inflated membrane beams for application in floating photovoltaic platform\",\"authors\":\"Yunling Ye ,&nbsp;Jin Gan ,&nbsp;Weiguo Wu ,&nbsp;Shan Wang ,&nbsp;C. Guedes Soares\",\"doi\":\"10.1016/j.tws.2024.112628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to investigate the bending and failure behaviour of aluminium-inflated membrane beams for their applications in floating photovoltaic platforms. Four-point bending tests are conducted for a range of inflated pressures and two different deck heights to assess their effect on structural stiffness and ultimate bearing capacity. Meanwhile, the surface-based fluid cavity method is employed to develop the finite element model with the material properties determined by independent coupon-level tests. The bearing capacity of the aluminium-inflated membrane beam is positively correlated with the internal pressure and deck height. The midspan strain distribution is similar to those of the traditional four-point bending beam with the upper part undergoing compression and the lower part experiencing tension, however, the structural behaviour at the failure stage is different. Failure typically occurs due to localised depressions at the loading points on the aluminium deck, ultimately leading to structural failure. The numerical model closely matches the experimental data for the initial inflated and bending configurations, exhibiting a deviation of only 0.10 % to 0.46 % in diameter and 0.32 % to 5.57 % in equivalent bending stiffness. A parametric study shows that the loading properties of the beam are more sensitive to the internal pressure than the deck height and thickness.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112628\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124010681\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010681","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在调查铝制充气膜梁在浮动光伏平台应用中的弯曲和破坏行为。针对一系列充气压力和两种不同的甲板高度进行了四点弯曲试验,以评估它们对结构刚度和极限承载能力的影响。同时,采用基于表面的流体空穴法建立有限元模型,材料属性由独立的试样水平测试确定。铝制充气膜梁的承载能力与内部压力和桥面高度呈正相关。中跨应变分布与传统的四点弯曲梁相似,上部受压,下部受拉,但破坏阶段的结构行为不同。破坏通常发生在铝甲板加载点的局部凹陷处,最终导致结构破坏。数值模型与初始充气和弯曲配置的实验数据非常吻合,直径偏差仅为 0.10 % 至 0.46 %,等效弯曲刚度偏差为 0.32 % 至 5.57 %。参数研究表明,梁的加载特性对内压比甲板高度和厚度更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical behaviour of rigid-flexible combined structures: Aluminium-inflated membrane beams for application in floating photovoltaic platform
This study aims to investigate the bending and failure behaviour of aluminium-inflated membrane beams for their applications in floating photovoltaic platforms. Four-point bending tests are conducted for a range of inflated pressures and two different deck heights to assess their effect on structural stiffness and ultimate bearing capacity. Meanwhile, the surface-based fluid cavity method is employed to develop the finite element model with the material properties determined by independent coupon-level tests. The bearing capacity of the aluminium-inflated membrane beam is positively correlated with the internal pressure and deck height. The midspan strain distribution is similar to those of the traditional four-point bending beam with the upper part undergoing compression and the lower part experiencing tension, however, the structural behaviour at the failure stage is different. Failure typically occurs due to localised depressions at the loading points on the aluminium deck, ultimately leading to structural failure. The numerical model closely matches the experimental data for the initial inflated and bending configurations, exhibiting a deviation of only 0.10 % to 0.46 % in diameter and 0.32 % to 5.57 % in equivalent bending stiffness. A parametric study shows that the loading properties of the beam are more sensitive to the internal pressure than the deck height and thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Comparative study on collapse behavior of modular steel buildings: Experiment and analysis Local-global buckling interaction in steel I-beams—A European design proposal for the case of fire Impact resistance performance of 3D woven TZ800H plates with different textile architecture Integrated optimization of ply number, layer thickness, and fiber angle for variable-stiffness composites using dynamic multi-fidelity surrogate model Free vibration and nonlinear transient analysis of blast-loaded FGM sandwich plates with stepped face sheets: Analytical and artificial neural network approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1