西洛他唑和单硝酸异山梨酯联合治疗可减轻微栓子介导的血管认知障碍,并改善糖尿病大鼠的成像和血浆生物标志物

IF 4.6 2区 医学 Q1 NEUROSCIENCES Experimental Neurology Pub Date : 2024-10-25 DOI:10.1016/j.expneurol.2024.115030
{"title":"西洛他唑和单硝酸异山梨酯联合治疗可减轻微栓子介导的血管认知障碍,并改善糖尿病大鼠的成像和血浆生物标志物","authors":"","doi":"10.1016/j.expneurol.2024.115030","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes is a major risk factor for all types of dementia. The underlying reasons are not fully understood, and preventive therapeutic strategies are lacking. Previously we have shown that diabetic but not control rats developed a progressive cognitive decline in a microemboli (ME) model of vascular contributions to cognitive impairment &amp; dementia (VCID). Given the cerebrovascular dysfunction is a mutual pathological change between diabetes and VCID, we hypothesized that the cognitive impairment in this ME model can be prevented by improving the endothelial function in diabetes. Our treatment paradigm was based on the LACI-2 Trial which assessed the efficacy of isosorbide mononitrate (ISMN) and cilostazol (Cil) treatments in small vessel disease progression. Control and diabetic rats were treated with ISMN/Cil or vehicle for 4 weeks, then injected with cholesterol crystal ME and the behavioral outcomes were monitored. Brain microstructure integrity was assessed by diffusion MRI. Plasma biomarkers were assessed using angiogenesis, neurology and amyloid β 42/40 panels recommended by the MarkVCID consortium. Behavioral deficits and the loss of tissue integrity previously observed in untreated diabetic rats were not noted in the treated animals in this study. Treatment improved tissue perfusion but there were no differences in plasma biomarkers. These results suggest that restoration of endothelial function with ISMN/Cil before ME injection prevented the possible deleterious effects of ME in diabetic rats by improving the endothelial integrity and it is a practical preventive and therapeutic strategy for VCID.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination treatment with cilostazol and isosorbide mononitrate attenuates microemboli-mediated vascular cognitive impairment and improves imaging and plasma biomarkers in diabetic rats\",\"authors\":\"\",\"doi\":\"10.1016/j.expneurol.2024.115030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes is a major risk factor for all types of dementia. The underlying reasons are not fully understood, and preventive therapeutic strategies are lacking. Previously we have shown that diabetic but not control rats developed a progressive cognitive decline in a microemboli (ME) model of vascular contributions to cognitive impairment &amp; dementia (VCID). Given the cerebrovascular dysfunction is a mutual pathological change between diabetes and VCID, we hypothesized that the cognitive impairment in this ME model can be prevented by improving the endothelial function in diabetes. Our treatment paradigm was based on the LACI-2 Trial which assessed the efficacy of isosorbide mononitrate (ISMN) and cilostazol (Cil) treatments in small vessel disease progression. Control and diabetic rats were treated with ISMN/Cil or vehicle for 4 weeks, then injected with cholesterol crystal ME and the behavioral outcomes were monitored. Brain microstructure integrity was assessed by diffusion MRI. Plasma biomarkers were assessed using angiogenesis, neurology and amyloid β 42/40 panels recommended by the MarkVCID consortium. Behavioral deficits and the loss of tissue integrity previously observed in untreated diabetic rats were not noted in the treated animals in this study. Treatment improved tissue perfusion but there were no differences in plasma biomarkers. These results suggest that restoration of endothelial function with ISMN/Cil before ME injection prevented the possible deleterious effects of ME in diabetic rats by improving the endothelial integrity and it is a practical preventive and therapeutic strategy for VCID.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001448862400356X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448862400356X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是所有类型痴呆症的主要风险因素。其根本原因尚不完全清楚,也缺乏预防性治疗策略。此前,我们已经证明,在微栓子(ME)认知障碍& 痴呆(VCID)的血管作用模型中,糖尿病大鼠而非对照组大鼠会出现进行性认知功能下降。鉴于脑血管功能障碍是糖尿病和 VCID 之间的共同病理变化,我们假设可以通过改善糖尿病大鼠的内皮功能来预防 ME 模型中的认知功能障碍。我们的治疗范式基于 LACI-2 试验,该试验评估了单硝酸异山梨酯(ISMN)和西洛他唑(Cil)治疗小血管疾病进展的疗效。对照组和糖尿病大鼠接受 ISMN/Cil 或药物治疗 4 周,然后注射胆固醇晶体 ME 并监测行为结果。通过弥散核磁共振成像评估大脑微观结构的完整性。血浆生物标志物采用 MarkVCID 联盟推荐的血管生成、神经学和淀粉样β 42/40 面板进行评估。在本研究中,接受治疗的动物没有出现之前在未经治疗的糖尿病大鼠身上观察到的行为障碍和组织完整性丧失。治疗改善了组织灌注,但血浆生物标志物并无差异。这些结果表明,在注射ME前用ISMN/Cil恢复内皮功能可通过改善内皮完整性来防止ME对糖尿病大鼠可能产生的有害影响,是一种实用的VCID预防和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination treatment with cilostazol and isosorbide mononitrate attenuates microemboli-mediated vascular cognitive impairment and improves imaging and plasma biomarkers in diabetic rats
Diabetes is a major risk factor for all types of dementia. The underlying reasons are not fully understood, and preventive therapeutic strategies are lacking. Previously we have shown that diabetic but not control rats developed a progressive cognitive decline in a microemboli (ME) model of vascular contributions to cognitive impairment & dementia (VCID). Given the cerebrovascular dysfunction is a mutual pathological change between diabetes and VCID, we hypothesized that the cognitive impairment in this ME model can be prevented by improving the endothelial function in diabetes. Our treatment paradigm was based on the LACI-2 Trial which assessed the efficacy of isosorbide mononitrate (ISMN) and cilostazol (Cil) treatments in small vessel disease progression. Control and diabetic rats were treated with ISMN/Cil or vehicle for 4 weeks, then injected with cholesterol crystal ME and the behavioral outcomes were monitored. Brain microstructure integrity was assessed by diffusion MRI. Plasma biomarkers were assessed using angiogenesis, neurology and amyloid β 42/40 panels recommended by the MarkVCID consortium. Behavioral deficits and the loss of tissue integrity previously observed in untreated diabetic rats were not noted in the treated animals in this study. Treatment improved tissue perfusion but there were no differences in plasma biomarkers. These results suggest that restoration of endothelial function with ISMN/Cil before ME injection prevented the possible deleterious effects of ME in diabetic rats by improving the endothelial integrity and it is a practical preventive and therapeutic strategy for VCID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
期刊最新文献
Anesthesia/surgery leads to blood-brain barrier disruption via the transcellular and paracellular pathways, and postoperative delirium-like behavior: A comparative study in mice of different ages. Temporal development of seizure threshold and spontaneous seizures after neonatal asphyxia and the effect of prophylactic treatment with midazolam in rats. Early α-synuclein/synapsin III co-accumulation, nigrostriatal dopaminergic synaptopathy and denervation in the MPTPp mouse model of Parkinson's Disease. Comparing white and gray matter responses to lobar intracerebral hemorrhage in piglets and the effects of deferoxamine. Multifaceted role of thrombin in subarachnoid hemorrhage: Focusing on cerebrospinal fluid circulation disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1