用于有几何偏差表面的智能检测、验证操作和建模的主动学习过程

T. MORO
{"title":"用于有几何偏差表面的智能检测、验证操作和建模的主动学习过程","authors":"T. MORO","doi":"10.1016/j.procir.2024.10.034","DOIUrl":null,"url":null,"abstract":"<div><div>The ISO 17450-2:2012 defines the verification operation. The ISO 17450-1:2011 defines the extracted features and the extraction operations on the “non-ideal surface model or on the real surface of the workpiece”. The ISO 12781-2:2011 and 12180-2:2011 provide dedicated extraction strategies for the flatness and cylindricity. But no real measurement process is explicit here. However, one of the key factors in an inspection plan is the choice of the measurement strategy. Some sampling strategies, such as Hammersley sequence, offer robust and efficient technics to ensure good distribution of measurement points. But measurements are always defined with a “blind sampling strategy”. So, in this paper, the author proposed to use adaptative sampling strategies, based on the Active learning method based on Kriging for the Inspection of Large Surfaces (AK-ILS) and developed an original Active Learning method based on Multi-Layer-Perceptron (AL-MLP), to classify the conform / non-conform parts and to ensure the reconstruction of the surfaces, with smart Skin Models Shapes and a minimal sampling size.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"129 ","pages":"Pages 193-198"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning Processes for Smart Inspection, Verification Operations and Modelling of Surfaces with Geometrical Deviations\",\"authors\":\"T. MORO\",\"doi\":\"10.1016/j.procir.2024.10.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ISO 17450-2:2012 defines the verification operation. The ISO 17450-1:2011 defines the extracted features and the extraction operations on the “non-ideal surface model or on the real surface of the workpiece”. The ISO 12781-2:2011 and 12180-2:2011 provide dedicated extraction strategies for the flatness and cylindricity. But no real measurement process is explicit here. However, one of the key factors in an inspection plan is the choice of the measurement strategy. Some sampling strategies, such as Hammersley sequence, offer robust and efficient technics to ensure good distribution of measurement points. But measurements are always defined with a “blind sampling strategy”. So, in this paper, the author proposed to use adaptative sampling strategies, based on the Active learning method based on Kriging for the Inspection of Large Surfaces (AK-ILS) and developed an original Active Learning method based on Multi-Layer-Perceptron (AL-MLP), to classify the conform / non-conform parts and to ensure the reconstruction of the surfaces, with smart Skin Models Shapes and a minimal sampling size.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"129 \",\"pages\":\"Pages 193-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827124011703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124011703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ISO 17450-2:2012 规定了验证操作。ISO 17450-1:2011 规定了 "非理想表面模型或工件真实表面 "的提取特征和提取操作。ISO 12781-2:2011 和 12180-2:2011 为平面度和圆柱度提供了专门的提取策略。但这里没有明确说明实际测量过程。不过,检测计划的关键因素之一是测量策略的选择。一些采样策略,如哈默斯利序列,提供了强大而高效的技术,以确保测量点的良好分布。但是,测量总是以 "盲目采样策略 "来定义的。因此,在本文中,作者建议使用基于克里金法的大表面检测主动学习方法(AK-ILS)的适应性取样策略,并开发了一种基于多层感知器(AL-MLP)的原始主动学习方法,以对符合/不符合部件进行分类,并确保通过智能皮肤模型形状和最小取样尺寸重建表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Learning Processes for Smart Inspection, Verification Operations and Modelling of Surfaces with Geometrical Deviations
The ISO 17450-2:2012 defines the verification operation. The ISO 17450-1:2011 defines the extracted features and the extraction operations on the “non-ideal surface model or on the real surface of the workpiece”. The ISO 12781-2:2011 and 12180-2:2011 provide dedicated extraction strategies for the flatness and cylindricity. But no real measurement process is explicit here. However, one of the key factors in an inspection plan is the choice of the measurement strategy. Some sampling strategies, such as Hammersley sequence, offer robust and efficient technics to ensure good distribution of measurement points. But measurements are always defined with a “blind sampling strategy”. So, in this paper, the author proposed to use adaptative sampling strategies, based on the Active learning method based on Kriging for the Inspection of Large Surfaces (AK-ILS) and developed an original Active Learning method based on Multi-Layer-Perceptron (AL-MLP), to classify the conform / non-conform parts and to ensure the reconstruction of the surfaces, with smart Skin Models Shapes and a minimal sampling size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1