利用十甲基葫芦[5]脲-碱土金属改性钯纳米颗粒增强二氧化碳电还原能力

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-10-31 DOI:10.1039/D4QI02135E
Tao Shao, Xianmeng Song, Zongnan Wei, Shuaibing Yang, Siying Zhang, Rong Cao and Minna Cao
{"title":"利用十甲基葫芦[5]脲-碱土金属改性钯纳米颗粒增强二氧化碳电还原能力","authors":"Tao Shao, Xianmeng Song, Zongnan Wei, Shuaibing Yang, Siying Zhang, Rong Cao and Minna Cao","doi":"10.1039/D4QI02135E","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) offers a promising pathway to convert CO<small><sub>2</sub></small> into value-added chemicals, with CO production being a primary target. While the conversion of CO<small><sub>2</sub></small> to CO hinges on the delicate balance of *COOH and *CO binding energies, this study introduces a series of Pd-based hybrid catalysts, Me<small><sub>10</sub></small>CB[5]–M/Pd (M = Sr, Ca, and Cd), to address this challenge. The catalysts were synthesized <em>via</em> thermal treatment of supramolecular precursors formed by Me<small><sub>10</sub></small>CB[5], M<small><sup>2+</sup></small>, and [PdCl<small><sub>4</sub></small>]<small><sup>2−</sup></small> ions. Notably, Me<small><sub>10</sub></small>CB[5]–Sr/Pd exhibited exceptional CO selectivity (91.3% FE<small><sub>CO</sub></small> at −0.7 V <em>vs.</em> RHE) and long-term stability. The incorporation of Me<small><sub>10</sub></small>CB[5]–Sr into the Pd catalyst system enhanced CO<small><sub>2</sub></small> adsorption, modulated the electronic structure of Pd, and optimized the adsorption/desorption energies of critical intermediates, ultimately leading to superior CO<small><sub>2</sub></small>RR performance. This work underscores the potential of supramolecular engineering in designing high-performance electrocatalysts for CO<small><sub>2</sub></small> conversion.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 24","pages":" 8671-8678"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing CO2 electroreduction with decamethylcucurbit[5]uril-alkaline earth metal modified Pd nanoparticles†\",\"authors\":\"Tao Shao, Xianmeng Song, Zongnan Wei, Shuaibing Yang, Siying Zhang, Rong Cao and Minna Cao\",\"doi\":\"10.1039/D4QI02135E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) offers a promising pathway to convert CO<small><sub>2</sub></small> into value-added chemicals, with CO production being a primary target. While the conversion of CO<small><sub>2</sub></small> to CO hinges on the delicate balance of *COOH and *CO binding energies, this study introduces a series of Pd-based hybrid catalysts, Me<small><sub>10</sub></small>CB[5]–M/Pd (M = Sr, Ca, and Cd), to address this challenge. The catalysts were synthesized <em>via</em> thermal treatment of supramolecular precursors formed by Me<small><sub>10</sub></small>CB[5], M<small><sup>2+</sup></small>, and [PdCl<small><sub>4</sub></small>]<small><sup>2−</sup></small> ions. Notably, Me<small><sub>10</sub></small>CB[5]–Sr/Pd exhibited exceptional CO selectivity (91.3% FE<small><sub>CO</sub></small> at −0.7 V <em>vs.</em> RHE) and long-term stability. The incorporation of Me<small><sub>10</sub></small>CB[5]–Sr into the Pd catalyst system enhanced CO<small><sub>2</sub></small> adsorption, modulated the electronic structure of Pd, and optimized the adsorption/desorption energies of critical intermediates, ultimately leading to superior CO<small><sub>2</sub></small>RR performance. This work underscores the potential of supramolecular engineering in designing high-performance electrocatalysts for CO<small><sub>2</sub></small> conversion.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 24\",\"pages\":\" 8671-8678\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02135e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02135e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

电化学二氧化碳还原反应(CO2RR)为将二氧化碳转化为高附加值化学品提供了一条前景广阔的途径,而 CO 生产则是其中的一个主要目标。将 CO2 转化为 CO 取决于 *COOH 和 *CO 结合能的微妙平衡,本研究介绍了一系列钯基混合催化剂 Me10CB[5]-M/Pd(M=Sr、Ca、Cd),以应对这一挑战。这些催化剂是通过热处理由 Me10CB[5]、M2+ 和 [PdCl4]2- 离子形成的超分子前体而合成的。值得注意的是,Me10CB[5]-Sr/Pd 表现出优异的 CO 选择性(-0.7 V 对 RHE 时 FECO 为 91.3%)和长期稳定性。在钯催化剂体系中加入 Me10CB[5]-Sr 增强了对 CO2 的吸附,调节了钯的电子结构,优化了关键中间产物的吸附/解吸能,最终实现了卓越的 CO2RR 性能。这项研究强调了超分子工程在设计用于二氧化碳转化的高性能电催化剂方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing CO2 electroreduction with decamethylcucurbit[5]uril-alkaline earth metal modified Pd nanoparticles†

The electrochemical CO2 reduction reaction (CO2RR) offers a promising pathway to convert CO2 into value-added chemicals, with CO production being a primary target. While the conversion of CO2 to CO hinges on the delicate balance of *COOH and *CO binding energies, this study introduces a series of Pd-based hybrid catalysts, Me10CB[5]–M/Pd (M = Sr, Ca, and Cd), to address this challenge. The catalysts were synthesized via thermal treatment of supramolecular precursors formed by Me10CB[5], M2+, and [PdCl4]2− ions. Notably, Me10CB[5]–Sr/Pd exhibited exceptional CO selectivity (91.3% FECO at −0.7 V vs. RHE) and long-term stability. The incorporation of Me10CB[5]–Sr into the Pd catalyst system enhanced CO2 adsorption, modulated the electronic structure of Pd, and optimized the adsorption/desorption energies of critical intermediates, ultimately leading to superior CO2RR performance. This work underscores the potential of supramolecular engineering in designing high-performance electrocatalysts for CO2 conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
X-ray imaging and storage based on a NaF modified Y3Al2Ga3O12:Ce phosphor Construction of Ni–Co alloy/zeolite nanosheet catalysts for the hydrodeoxygenation of fatty acids to alkanes Photoinduced NO release of [Fe2(µ-SL)2(NO)4] complexes and their protein adducts: insights from structure, cytotoxicity, and photodynamic studies Porous NiCo alloy thin sheets with synergistic Co/Ni sites for high-efficiency urea-assisted electrocatalytic hydrogen production The hydrolytic stability of the human tubulin α 1A protein fragment – a potential reason for the role of metal ions in the development of neurodegenerative diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1