Prakash Aryal, Claire E Hefner, Brandaise Martinez, Eric Brack, Charles S Henry
{"title":"基于公民的水质监测:实地测试全球地表水磷酸盐检测的用户友好型传感器。","authors":"Prakash Aryal, Claire E Hefner, Brandaise Martinez, Eric Brack, Charles S Henry","doi":"10.1021/acs.analchem.4c02123","DOIUrl":null,"url":null,"abstract":"<p><p>Widespread concern over surface water pollution has led to interest in developing easy-to-use accurate tools for citizen-based measurements that provide high spatial and temporal resolution while maintaining accuracy. Excessive anthropogenic phosphate significantly contributes to global eutrophication and necessitates regular on-site phosphate monitoring in surface waters. Traditional instrumentation for quantifying phosphate is labor-intensive, expensive, and performed in laboratories. Existing on-site testing methods relying on phosphomolybdenum blue (PMB) have limited sensitivity and stability under ambient conditions. To overcome these limitations, a novel low-cost, rapid, and user-friendly sensor for citizen-led phosphate monitoring in surface water is introduced and demonstrated with a global sampling campaign. The fast-flow microfluidic device provides user-friendly operation, achieving an environmentally relevant limit of detection (LoD) of 190 ppb, which is near the EPA-recommended maximum for phosphate. The dip-and-read operation reduces procedural steps while delivering accurate sample volume, making it well-suited for citizen-led science initiatives. This sensor exhibits high selectivity and prolonged stability for two months under ambient conditions. The sensor's performance was validated using the industry-standard UV-Vis method with 90% correlation. More than 1000 sensors were deployed in different continents, facilitating phosphate mapping in diverse water sources across multiple continents. The initiative covered much of the globe, including Thailand, Nepal, Brazil, Chile, the USA, and Germany. In some cases, phosphate levels exceeded legislative guidelines by 100-fold. Through the collaboration of citizen scientists, we analyzed regional topography and socioeconomic practices near water sources, identifying potential sources that could contribute to eutrophication in these areas.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":"18369-18376"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters.\",\"authors\":\"Prakash Aryal, Claire E Hefner, Brandaise Martinez, Eric Brack, Charles S Henry\",\"doi\":\"10.1021/acs.analchem.4c02123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Widespread concern over surface water pollution has led to interest in developing easy-to-use accurate tools for citizen-based measurements that provide high spatial and temporal resolution while maintaining accuracy. Excessive anthropogenic phosphate significantly contributes to global eutrophication and necessitates regular on-site phosphate monitoring in surface waters. Traditional instrumentation for quantifying phosphate is labor-intensive, expensive, and performed in laboratories. Existing on-site testing methods relying on phosphomolybdenum blue (PMB) have limited sensitivity and stability under ambient conditions. To overcome these limitations, a novel low-cost, rapid, and user-friendly sensor for citizen-led phosphate monitoring in surface water is introduced and demonstrated with a global sampling campaign. The fast-flow microfluidic device provides user-friendly operation, achieving an environmentally relevant limit of detection (LoD) of 190 ppb, which is near the EPA-recommended maximum for phosphate. The dip-and-read operation reduces procedural steps while delivering accurate sample volume, making it well-suited for citizen-led science initiatives. This sensor exhibits high selectivity and prolonged stability for two months under ambient conditions. The sensor's performance was validated using the industry-standard UV-Vis method with 90% correlation. More than 1000 sensors were deployed in different continents, facilitating phosphate mapping in diverse water sources across multiple continents. The initiative covered much of the globe, including Thailand, Nepal, Brazil, Chile, the USA, and Germany. In some cases, phosphate levels exceeded legislative guidelines by 100-fold. Through the collaboration of citizen scientists, we analyzed regional topography and socioeconomic practices near water sources, identifying potential sources that could contribute to eutrophication in these areas.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"18369-18376\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c02123\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c02123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters.
Widespread concern over surface water pollution has led to interest in developing easy-to-use accurate tools for citizen-based measurements that provide high spatial and temporal resolution while maintaining accuracy. Excessive anthropogenic phosphate significantly contributes to global eutrophication and necessitates regular on-site phosphate monitoring in surface waters. Traditional instrumentation for quantifying phosphate is labor-intensive, expensive, and performed in laboratories. Existing on-site testing methods relying on phosphomolybdenum blue (PMB) have limited sensitivity and stability under ambient conditions. To overcome these limitations, a novel low-cost, rapid, and user-friendly sensor for citizen-led phosphate monitoring in surface water is introduced and demonstrated with a global sampling campaign. The fast-flow microfluidic device provides user-friendly operation, achieving an environmentally relevant limit of detection (LoD) of 190 ppb, which is near the EPA-recommended maximum for phosphate. The dip-and-read operation reduces procedural steps while delivering accurate sample volume, making it well-suited for citizen-led science initiatives. This sensor exhibits high selectivity and prolonged stability for two months under ambient conditions. The sensor's performance was validated using the industry-standard UV-Vis method with 90% correlation. More than 1000 sensors were deployed in different continents, facilitating phosphate mapping in diverse water sources across multiple continents. The initiative covered much of the globe, including Thailand, Nepal, Brazil, Chile, the USA, and Germany. In some cases, phosphate levels exceeded legislative guidelines by 100-fold. Through the collaboration of citizen scientists, we analyzed regional topography and socioeconomic practices near water sources, identifying potential sources that could contribute to eutrophication in these areas.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.