Yu-Li Lo, Ci-Jheng Hong, Chen-Shen Wang, Ching-Ping Yang
{"title":"利用可裂解 PEG 外壳和表皮生长因子受体靶向纳米颗粒调节多功能途径,输送 CRISPR-Cas9 和多西他赛以抑制三阴性乳腺癌。","authors":"Yu-Li Lo, Ci-Jheng Hong, Chen-Shen Wang, Ching-Ping Yang","doi":"10.1007/s12272-024-01514-0","DOIUrl":null,"url":null,"abstract":"<p><p>Human antigen R (HuR), an RNA-binding protein, is implicated in regulating mRNA stability and translation in cancer, especially in triple-negative breast cancer (TNBC), a highly aggressive form. CRISPR/Cas9-mediated HuR knockout (HuR CRISPR) presents a promising genetic therapeutic approach, but it encounters transfection limitations. Docetaxel (DTX), an effective cytotoxic agent against metastatic breast cancer (BC), faces challenges related to vehicle-associated adverse events in DTX formulations. Therefore, we designed multifunctional nanoparticles with pH-sensitive PEG derivatives and targeting peptides to enable efficient HuR CRISPR and DTX delivery to human TNBC MDA-MB-231 cells and tumor-bearing mice. Our findings indicated that these nanoparticles displayed pH-responsive cytotoxicity, precise EGFR targeting, efficient tumor penetration, successful endosomal escape, and accurate nuclear and cytoplasmic localization. They also demonstrated the ability to spare normal cells and prevent hemolysis. Our study concurrently modulated multiple pathways, including EGFR, Wnt/β-catenin, MDR, and EMT, through the regulation of EGFR/PI3K/AKT, HuR/galectin-3/GSK-3β/β-catenin, and P-gp/MRPs/BCRP, as well as YAP1/TGF-β/ZEB1/Slug/MMPs. The combined treatment arrested the cell cycle at the G2 phase and inhibited EMT, effectively impeding tumor progression. Tissue distribution, biochemical assays, and histological staining revealed the enhanced safety profile of pH-responsive PEG- and peptide-modified nanoformulations in TNBC mice. The DTX-embedded and peptide-modified nanoparticles mitigated the side effects of DTX, enhanced cytotoxicity in TNBC MDA-MB-231 cells, and exhibited remarkable antitumor efficacy and safety in TNBC-bearing mice with HuR CRISPR deletion. Collectively, the combination therapy of DTX and CRISPR/Cas9 offers an effective platform for delivering antineoplastic agents and gene-editing systems to combat tumor resistance and progression in TNBC.</p>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating versatile pathways using a cleavable PEG shell and EGFR-targeted nanoparticles to deliver CRISPR-Cas9 and docetaxel for triple-negative breast cancer inhibition.\",\"authors\":\"Yu-Li Lo, Ci-Jheng Hong, Chen-Shen Wang, Ching-Ping Yang\",\"doi\":\"10.1007/s12272-024-01514-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human antigen R (HuR), an RNA-binding protein, is implicated in regulating mRNA stability and translation in cancer, especially in triple-negative breast cancer (TNBC), a highly aggressive form. CRISPR/Cas9-mediated HuR knockout (HuR CRISPR) presents a promising genetic therapeutic approach, but it encounters transfection limitations. Docetaxel (DTX), an effective cytotoxic agent against metastatic breast cancer (BC), faces challenges related to vehicle-associated adverse events in DTX formulations. Therefore, we designed multifunctional nanoparticles with pH-sensitive PEG derivatives and targeting peptides to enable efficient HuR CRISPR and DTX delivery to human TNBC MDA-MB-231 cells and tumor-bearing mice. Our findings indicated that these nanoparticles displayed pH-responsive cytotoxicity, precise EGFR targeting, efficient tumor penetration, successful endosomal escape, and accurate nuclear and cytoplasmic localization. They also demonstrated the ability to spare normal cells and prevent hemolysis. Our study concurrently modulated multiple pathways, including EGFR, Wnt/β-catenin, MDR, and EMT, through the regulation of EGFR/PI3K/AKT, HuR/galectin-3/GSK-3β/β-catenin, and P-gp/MRPs/BCRP, as well as YAP1/TGF-β/ZEB1/Slug/MMPs. The combined treatment arrested the cell cycle at the G2 phase and inhibited EMT, effectively impeding tumor progression. Tissue distribution, biochemical assays, and histological staining revealed the enhanced safety profile of pH-responsive PEG- and peptide-modified nanoformulations in TNBC mice. The DTX-embedded and peptide-modified nanoparticles mitigated the side effects of DTX, enhanced cytotoxicity in TNBC MDA-MB-231 cells, and exhibited remarkable antitumor efficacy and safety in TNBC-bearing mice with HuR CRISPR deletion. Collectively, the combination therapy of DTX and CRISPR/Cas9 offers an effective platform for delivering antineoplastic agents and gene-editing systems to combat tumor resistance and progression in TNBC.</p>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12272-024-01514-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12272-024-01514-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Modulating versatile pathways using a cleavable PEG shell and EGFR-targeted nanoparticles to deliver CRISPR-Cas9 and docetaxel for triple-negative breast cancer inhibition.
Human antigen R (HuR), an RNA-binding protein, is implicated in regulating mRNA stability and translation in cancer, especially in triple-negative breast cancer (TNBC), a highly aggressive form. CRISPR/Cas9-mediated HuR knockout (HuR CRISPR) presents a promising genetic therapeutic approach, but it encounters transfection limitations. Docetaxel (DTX), an effective cytotoxic agent against metastatic breast cancer (BC), faces challenges related to vehicle-associated adverse events in DTX formulations. Therefore, we designed multifunctional nanoparticles with pH-sensitive PEG derivatives and targeting peptides to enable efficient HuR CRISPR and DTX delivery to human TNBC MDA-MB-231 cells and tumor-bearing mice. Our findings indicated that these nanoparticles displayed pH-responsive cytotoxicity, precise EGFR targeting, efficient tumor penetration, successful endosomal escape, and accurate nuclear and cytoplasmic localization. They also demonstrated the ability to spare normal cells and prevent hemolysis. Our study concurrently modulated multiple pathways, including EGFR, Wnt/β-catenin, MDR, and EMT, through the regulation of EGFR/PI3K/AKT, HuR/galectin-3/GSK-3β/β-catenin, and P-gp/MRPs/BCRP, as well as YAP1/TGF-β/ZEB1/Slug/MMPs. The combined treatment arrested the cell cycle at the G2 phase and inhibited EMT, effectively impeding tumor progression. Tissue distribution, biochemical assays, and histological staining revealed the enhanced safety profile of pH-responsive PEG- and peptide-modified nanoformulations in TNBC mice. The DTX-embedded and peptide-modified nanoparticles mitigated the side effects of DTX, enhanced cytotoxicity in TNBC MDA-MB-231 cells, and exhibited remarkable antitumor efficacy and safety in TNBC-bearing mice with HuR CRISPR deletion. Collectively, the combination therapy of DTX and CRISPR/Cas9 offers an effective platform for delivering antineoplastic agents and gene-editing systems to combat tumor resistance and progression in TNBC.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.