Lucas Eigi Borges Tanaka, Camila da Silva Rodrigues, Manassés Tércio Vieira Grangeiro, Tiago Moreira Bastos Campos, Renata Marques de Melo
{"title":"用于最终牙科修复的 3D 打印复合材料的表征。","authors":"Lucas Eigi Borges Tanaka, Camila da Silva Rodrigues, Manassés Tércio Vieira Grangeiro, Tiago Moreira Bastos Campos, Renata Marques de Melo","doi":"10.1007/s00784-024-06003-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study evaluated the mechanical, optical, microstructural, surface, and adhesive behavior of a 3D printing resin comparing it with a machinable resin composite.</p><p><strong>Materials and methods: </strong>Specimens of different sizes and shapes were either printed (Vitality, Smart Dent) or machinable (Grandio Blocs, Voco GmbH) resin composites with similar composition were prepared. Surface and mechanical characterization were performed with Knoop hardness, flexural strength (three-point-bending), and elastic modulus tests. The wear of the tested materials was evaluated against steatite antagonists. The optical properties stability (color change, ΔE<sub>00,</sub> and translucency, TP<sub>00</sub>) were observed after staining in red wine. In addition, the bond strength of the resin composites to two resin cement protocols were investigated with microshear bond strength tests at baseline and after thermocycling. Scanning electron microscope (SEM) coupled with Energy-Dispersive X-ray Spectroscopy (EDS) was used for microstructural and chemical characterization. Statistical analyses were performed with t- and ANOVA tests.</p><p><strong>Results: </strong>Hardness values (132.76 (16.32) KH- Machinable and 35.87 (2.78) KH - Printed), flexural strength (172.17 (26.99) MPa - Machinable and 88.69 (8.39) MPa - Printed), color and translucency change (1.86 (0.31)/0.06 - Machinable and 3.73 (0.36)/9,16- Printed), and wear depth (24.97 mm (3.60)- Machinable and 7.16 mm (2.84) - Printed) were statistically different. Average Regarding bond strength, mean values (MPa) for non-aged and aged groups were respectively 21.76 (6.64) / 31.9 (12.66) for Bifix cement (Voco GmbH, Cuxhaven, Germany) and 26.75 (5.14) / 24.36 (6.85) for Variolink cement (Ivoclar Vivadent, Schaan, Liechtenstein) in Printed and 17.79 (3.89) / 9.01 (3.36) ) for Bifix cement and 22.09 (6.55) / 11.01 (3.77) for Variolink cement in Machinable materials. The material and aging factors did affect bond strength but the cement factor did not (p = 0.202). No statistical differences were observed for mean roughness (Ra) between materials. The better dispersion and larger size of the inorganic particles in the Machinable resin were contrasted with the clustered smaller particles of printed resin, under SEM.</p><p><strong>Conclusions: </strong>The mechanical properties and color stability of the machinable resin were superior to those of the printed resin, probably due to the greater amount and dispersion of inorganic particles in the Mach resin, but bond strength after aging was stronger and more stable in the printed resin.</p><p><strong>Clinical relevance: </strong>3D-printed resin composites with similar compositions to machinable resin composites do not necessarily exhibit the same properties, which can impact clinical performance. Understanding these differences can assist manufacturers in improving their materials and help clinicians distinguish between materials appropriate for provisional and final restorations.</p>","PeriodicalId":10461,"journal":{"name":"Clinical Oral Investigations","volume":"28 11","pages":"617"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of 3D printed composite for final dental restorations.\",\"authors\":\"Lucas Eigi Borges Tanaka, Camila da Silva Rodrigues, Manassés Tércio Vieira Grangeiro, Tiago Moreira Bastos Campos, Renata Marques de Melo\",\"doi\":\"10.1007/s00784-024-06003-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study evaluated the mechanical, optical, microstructural, surface, and adhesive behavior of a 3D printing resin comparing it with a machinable resin composite.</p><p><strong>Materials and methods: </strong>Specimens of different sizes and shapes were either printed (Vitality, Smart Dent) or machinable (Grandio Blocs, Voco GmbH) resin composites with similar composition were prepared. Surface and mechanical characterization were performed with Knoop hardness, flexural strength (three-point-bending), and elastic modulus tests. The wear of the tested materials was evaluated against steatite antagonists. The optical properties stability (color change, ΔE<sub>00,</sub> and translucency, TP<sub>00</sub>) were observed after staining in red wine. In addition, the bond strength of the resin composites to two resin cement protocols were investigated with microshear bond strength tests at baseline and after thermocycling. Scanning electron microscope (SEM) coupled with Energy-Dispersive X-ray Spectroscopy (EDS) was used for microstructural and chemical characterization. Statistical analyses were performed with t- and ANOVA tests.</p><p><strong>Results: </strong>Hardness values (132.76 (16.32) KH- Machinable and 35.87 (2.78) KH - Printed), flexural strength (172.17 (26.99) MPa - Machinable and 88.69 (8.39) MPa - Printed), color and translucency change (1.86 (0.31)/0.06 - Machinable and 3.73 (0.36)/9,16- Printed), and wear depth (24.97 mm (3.60)- Machinable and 7.16 mm (2.84) - Printed) were statistically different. Average Regarding bond strength, mean values (MPa) for non-aged and aged groups were respectively 21.76 (6.64) / 31.9 (12.66) for Bifix cement (Voco GmbH, Cuxhaven, Germany) and 26.75 (5.14) / 24.36 (6.85) for Variolink cement (Ivoclar Vivadent, Schaan, Liechtenstein) in Printed and 17.79 (3.89) / 9.01 (3.36) ) for Bifix cement and 22.09 (6.55) / 11.01 (3.77) for Variolink cement in Machinable materials. The material and aging factors did affect bond strength but the cement factor did not (p = 0.202). No statistical differences were observed for mean roughness (Ra) between materials. The better dispersion and larger size of the inorganic particles in the Machinable resin were contrasted with the clustered smaller particles of printed resin, under SEM.</p><p><strong>Conclusions: </strong>The mechanical properties and color stability of the machinable resin were superior to those of the printed resin, probably due to the greater amount and dispersion of inorganic particles in the Mach resin, but bond strength after aging was stronger and more stable in the printed resin.</p><p><strong>Clinical relevance: </strong>3D-printed resin composites with similar compositions to machinable resin composites do not necessarily exhibit the same properties, which can impact clinical performance. Understanding these differences can assist manufacturers in improving their materials and help clinicians distinguish between materials appropriate for provisional and final restorations.</p>\",\"PeriodicalId\":10461,\"journal\":{\"name\":\"Clinical Oral Investigations\",\"volume\":\"28 11\",\"pages\":\"617\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Oral Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00784-024-06003-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00784-024-06003-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Characterization of 3D printed composite for final dental restorations.
Objectives: This study evaluated the mechanical, optical, microstructural, surface, and adhesive behavior of a 3D printing resin comparing it with a machinable resin composite.
Materials and methods: Specimens of different sizes and shapes were either printed (Vitality, Smart Dent) or machinable (Grandio Blocs, Voco GmbH) resin composites with similar composition were prepared. Surface and mechanical characterization were performed with Knoop hardness, flexural strength (three-point-bending), and elastic modulus tests. The wear of the tested materials was evaluated against steatite antagonists. The optical properties stability (color change, ΔE00, and translucency, TP00) were observed after staining in red wine. In addition, the bond strength of the resin composites to two resin cement protocols were investigated with microshear bond strength tests at baseline and after thermocycling. Scanning electron microscope (SEM) coupled with Energy-Dispersive X-ray Spectroscopy (EDS) was used for microstructural and chemical characterization. Statistical analyses were performed with t- and ANOVA tests.
Results: Hardness values (132.76 (16.32) KH- Machinable and 35.87 (2.78) KH - Printed), flexural strength (172.17 (26.99) MPa - Machinable and 88.69 (8.39) MPa - Printed), color and translucency change (1.86 (0.31)/0.06 - Machinable and 3.73 (0.36)/9,16- Printed), and wear depth (24.97 mm (3.60)- Machinable and 7.16 mm (2.84) - Printed) were statistically different. Average Regarding bond strength, mean values (MPa) for non-aged and aged groups were respectively 21.76 (6.64) / 31.9 (12.66) for Bifix cement (Voco GmbH, Cuxhaven, Germany) and 26.75 (5.14) / 24.36 (6.85) for Variolink cement (Ivoclar Vivadent, Schaan, Liechtenstein) in Printed and 17.79 (3.89) / 9.01 (3.36) ) for Bifix cement and 22.09 (6.55) / 11.01 (3.77) for Variolink cement in Machinable materials. The material and aging factors did affect bond strength but the cement factor did not (p = 0.202). No statistical differences were observed for mean roughness (Ra) between materials. The better dispersion and larger size of the inorganic particles in the Machinable resin were contrasted with the clustered smaller particles of printed resin, under SEM.
Conclusions: The mechanical properties and color stability of the machinable resin were superior to those of the printed resin, probably due to the greater amount and dispersion of inorganic particles in the Mach resin, but bond strength after aging was stronger and more stable in the printed resin.
Clinical relevance: 3D-printed resin composites with similar compositions to machinable resin composites do not necessarily exhibit the same properties, which can impact clinical performance. Understanding these differences can assist manufacturers in improving their materials and help clinicians distinguish between materials appropriate for provisional and final restorations.
期刊介绍:
The journal Clinical Oral Investigations is a multidisciplinary, international forum for publication of research from all fields of oral medicine. The journal publishes original scientific articles and invited reviews which provide up-to-date results of basic and clinical studies in oral and maxillofacial science and medicine. The aim is to clarify the relevance of new results to modern practice, for an international readership. Coverage includes maxillofacial and oral surgery, prosthetics and restorative dentistry, operative dentistry, endodontics, periodontology, orthodontics, dental materials science, clinical trials, epidemiology, pedodontics, oral implant, preventive dentistiry, oral pathology, oral basic sciences and more.