Sun Sishuai, Gu Lingui, Li Pengtao, Bao Xinjie, Wei Junji
{"title":"通过外泌体调节内皮-间充质转化的进展。","authors":"Sun Sishuai, Gu Lingui, Li Pengtao, Bao Xinjie, Wei Junji","doi":"10.1186/s13287-024-04010-w","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529026/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in regulating endothelial-mesenchymal transformation through exosomes.\",\"authors\":\"Sun Sishuai, Gu Lingui, Li Pengtao, Bao Xinjie, Wei Junji\",\"doi\":\"10.1186/s13287-024-04010-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529026/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-04010-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04010-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Advances in regulating endothelial-mesenchymal transformation through exosomes.
Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.