{"title":"一种新型酯酶可调节肺炎克雷伯氏菌的高黏度和毒力。","authors":"Lijun Wang, Zhe Wang, Hua Zhang, Qian Jin, Shuaihua Fan, Yanni Liu, Xueting Huang, Jun Guo, Chao Cai, Jing-Ren Zhang, Hui Wu","doi":"10.1371/journal.ppat.1012675","DOIUrl":null,"url":null,"abstract":"<p><p>Klebsiella pneumoniae, an emerging multidrug-resistant pathogen, exhibits hypermucoviscosity (HMV) as a critical virulence trait mediated by its capsular polysaccharide (CPS). Recent discoveries have determined acetylation as a significant modification for CPS, although its impact on HMV and virulence was previously unknown. This study elucidates the roles of two enzymes: Klebsiella pneumoniae Acetylated CPS Esterase (KpACE), an esterase that removes acetyl groups from CPS, and WcsU, an acetyltransferase that adds acetyl groups to CPS. KpACE is highly upregulated in an ompR-deficient mutant lacking HMV, and its overexpression consistently reduces HMV and diminishes virulence in a mouse model of pneumonia. The esterase domain-containing KpACE effectively deacetylates model sugar substrates and CPS-K2. Site-directed mutagenesis of the conserved catalytic histidine residue at position 370 significantly reduces its enzymatic activity. This reduction correlates with decreased HMV, affecting key virulence traits including biofilm formation and serum resistance. Similarly, a deficiency in the wcsU gene abolishes CPS acetylation, and reduces HMV and virulence. These results highlight the importance of the delicate balance between CPS acetylation by WcsU and deacetylation by KpACE in regulating the pathogenicity of K. pneumoniae. Understanding this balance provides new insights into the modulation of virulence traits and potential therapeutic targets for combating K. pneumoniae infections.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 10","pages":"e1012675"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556721/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel esterase regulates Klebsiella pneumoniae hypermucoviscosity and virulence.\",\"authors\":\"Lijun Wang, Zhe Wang, Hua Zhang, Qian Jin, Shuaihua Fan, Yanni Liu, Xueting Huang, Jun Guo, Chao Cai, Jing-Ren Zhang, Hui Wu\",\"doi\":\"10.1371/journal.ppat.1012675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Klebsiella pneumoniae, an emerging multidrug-resistant pathogen, exhibits hypermucoviscosity (HMV) as a critical virulence trait mediated by its capsular polysaccharide (CPS). Recent discoveries have determined acetylation as a significant modification for CPS, although its impact on HMV and virulence was previously unknown. This study elucidates the roles of two enzymes: Klebsiella pneumoniae Acetylated CPS Esterase (KpACE), an esterase that removes acetyl groups from CPS, and WcsU, an acetyltransferase that adds acetyl groups to CPS. KpACE is highly upregulated in an ompR-deficient mutant lacking HMV, and its overexpression consistently reduces HMV and diminishes virulence in a mouse model of pneumonia. The esterase domain-containing KpACE effectively deacetylates model sugar substrates and CPS-K2. Site-directed mutagenesis of the conserved catalytic histidine residue at position 370 significantly reduces its enzymatic activity. This reduction correlates with decreased HMV, affecting key virulence traits including biofilm formation and serum resistance. Similarly, a deficiency in the wcsU gene abolishes CPS acetylation, and reduces HMV and virulence. These results highlight the importance of the delicate balance between CPS acetylation by WcsU and deacetylation by KpACE in regulating the pathogenicity of K. pneumoniae. Understanding this balance provides new insights into the modulation of virulence traits and potential therapeutic targets for combating K. pneumoniae infections.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"20 10\",\"pages\":\"e1012675\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012675\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012675","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
A novel esterase regulates Klebsiella pneumoniae hypermucoviscosity and virulence.
Klebsiella pneumoniae, an emerging multidrug-resistant pathogen, exhibits hypermucoviscosity (HMV) as a critical virulence trait mediated by its capsular polysaccharide (CPS). Recent discoveries have determined acetylation as a significant modification for CPS, although its impact on HMV and virulence was previously unknown. This study elucidates the roles of two enzymes: Klebsiella pneumoniae Acetylated CPS Esterase (KpACE), an esterase that removes acetyl groups from CPS, and WcsU, an acetyltransferase that adds acetyl groups to CPS. KpACE is highly upregulated in an ompR-deficient mutant lacking HMV, and its overexpression consistently reduces HMV and diminishes virulence in a mouse model of pneumonia. The esterase domain-containing KpACE effectively deacetylates model sugar substrates and CPS-K2. Site-directed mutagenesis of the conserved catalytic histidine residue at position 370 significantly reduces its enzymatic activity. This reduction correlates with decreased HMV, affecting key virulence traits including biofilm formation and serum resistance. Similarly, a deficiency in the wcsU gene abolishes CPS acetylation, and reduces HMV and virulence. These results highlight the importance of the delicate balance between CPS acetylation by WcsU and deacetylation by KpACE in regulating the pathogenicity of K. pneumoniae. Understanding this balance provides new insights into the modulation of virulence traits and potential therapeutic targets for combating K. pneumoniae infections.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.