MYH1 缺乏症会破坏外毛细胞的电流动性,导致听力损失。

IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Experimental and Molecular Medicine Pub Date : 2024-11-01 DOI:10.1038/s12276-024-01338-4
Jinsei Jung, Sun Young Joo, Hyehyun Min, Jae Won Roh, Kyung Ah Kim, Ji-Hyun Ma, John Hoon Rim, Jung Ah Kim, Se Jin Kim, Seung Hyun Jang, Young Ik Koh, Hye-Youn Kim, Ho Lee, Byoung Choul Kim, Heon Yung Gee, Jinwoong Bok, Jae Young Choi, Je Kyung Seong
{"title":"MYH1 缺乏症会破坏外毛细胞的电流动性,导致听力损失。","authors":"Jinsei Jung, Sun Young Joo, Hyehyun Min, Jae Won Roh, Kyung Ah Kim, Ji-Hyun Ma, John Hoon Rim, Jung Ah Kim, Se Jin Kim, Seung Hyun Jang, Young Ik Koh, Hye-Youn Kim, Ho Lee, Byoung Choul Kim, Heon Yung Gee, Jinwoong Bok, Jae Young Choi, Je Kyung Seong","doi":"10.1038/s12276-024-01338-4","DOIUrl":null,"url":null,"abstract":"<p><p>Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss.\",\"authors\":\"Jinsei Jung, Sun Young Joo, Hyehyun Min, Jae Won Roh, Kyung Ah Kim, Ji-Hyun Ma, John Hoon Rim, Jung Ah Kim, Se Jin Kim, Seung Hyun Jang, Young Ik Koh, Hye-Youn Kim, Ho Lee, Byoung Choul Kim, Heon Yung Gee, Jinwoong Bok, Jae Young Choi, Je Kyung Seong\",\"doi\":\"10.1038/s12276-024-01338-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.</p>\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s12276-024-01338-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-024-01338-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Myh1 是一种小鼠耳聋基因,其在听觉系统中的功能尚不清楚。Myh1基因敲除小鼠听力损失的特征是听性脑干反应阈值升高,而失真产物耳声发射阈值缺失。在这里,我们研究了MYH1在外毛细胞(OHC)中的作用,外毛细胞是柯蒂器官中负责调节耳蜗放大的关键结构。外毛细胞的直接全细胞电压钳记录显示,Myh1基因敲除小鼠的预激素活性低于野生型小鼠,这表明外毛细胞的电流动性异常。我们分析了437名遗传原因不明的听力损失患者的全基因组测序数据,并在5个无关家族中发现了MYH1的双倍缺失变体。携带双倍MYH1变异的患者的听力损失是非进行性的,发病时间从先天性到儿童期不等。五个携带MYH1变异体的人中有三人出现骨质增生。利用 AlphaFold2 进行的结构预测和分子动力学模拟显示,与野生型 MYH1 相比,已确定的变体存在结构异常。在异质过表达系统中,MYH1变体,尤其是头部结构域的变体,会削弱MYH1的功能,如增加预蛋白活性和调节膜牵引力。总之,我们的研究结果表明,正如在Myh1缺陷小鼠中观察到的那样,MYH1在OHCs中具有重要功能,并提供了遗传学证据,证明双侧MYH1变体与人类常染色体隐性听力损失有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss.

Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental and Molecular Medicine
Experimental and Molecular Medicine 医学-生化与分子生物学
CiteScore
19.50
自引率
0.80%
发文量
166
审稿时长
3 months
期刊介绍: Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.
期刊最新文献
Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Sorcin can trigger pancreatic cancer-associated new-onset diabetes through the secretion of inflammatory cytokines such as serpin E1 and CCL5. Lactate utilization in Lace1 knockout mice promotes browning of inguinal white adipose tissue. SUMOylation of TP53INP1 is involved in miR-30a-5p-regulated heart senescence. The muscle-intervertebral disc interaction mediated by L-BAIBA modulates extracellular matrix homeostasis and PANoptosis in nucleus pulposus cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1