利用大型语言模型实现自动表型定义提取。

Ramya Tekumalla, Juan M Banda
{"title":"利用大型语言模型实现自动表型定义提取。","authors":"Ramya Tekumalla, Juan M Banda","doi":"10.1186/s44342-024-00023-2","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic phenotyping involves a detailed analysis of both structured and unstructured data, employing rule-based methods, machine learning, natural language processing, and hybrid approaches. Currently, the development of accurate phenotype definitions demands extensive literature reviews and clinical experts, rendering the process time-consuming and inherently unscalable. Large language models offer a promising avenue for automating phenotype definition extraction but come with significant drawbacks, including reliability issues, the tendency to generate non-factual data (\"hallucinations\"), misleading results, and potential harm. To address these challenges, our study embarked on two key objectives: (1) defining a standard evaluation set to ensure large language models outputs are both useful and reliable and (2) evaluating various prompting approaches to extract phenotype definitions from large language models, assessing them with our established evaluation task. Our findings reveal promising results that still require human evaluation and validation for this task. However, enhanced phenotype extraction is possible, reducing the amount of time spent in literature review and evaluation.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"22 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards automated phenotype definition extraction using large language models.\",\"authors\":\"Ramya Tekumalla, Juan M Banda\",\"doi\":\"10.1186/s44342-024-00023-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic phenotyping involves a detailed analysis of both structured and unstructured data, employing rule-based methods, machine learning, natural language processing, and hybrid approaches. Currently, the development of accurate phenotype definitions demands extensive literature reviews and clinical experts, rendering the process time-consuming and inherently unscalable. Large language models offer a promising avenue for automating phenotype definition extraction but come with significant drawbacks, including reliability issues, the tendency to generate non-factual data (\\\"hallucinations\\\"), misleading results, and potential harm. To address these challenges, our study embarked on two key objectives: (1) defining a standard evaluation set to ensure large language models outputs are both useful and reliable and (2) evaluating various prompting approaches to extract phenotype definitions from large language models, assessing them with our established evaluation task. Our findings reveal promising results that still require human evaluation and validation for this task. However, enhanced phenotype extraction is possible, reducing the amount of time spent in literature review and evaluation.</p>\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\"22 1\",\"pages\":\"21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44342-024-00023-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00023-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子表型涉及对结构化和非结构化数据的详细分析,采用基于规则的方法、机器学习、自然语言处理和混合方法。目前,准确表型定义的开发需要大量的文献综述和临床专家,因此这一过程既耗时又不可扩展。大型语言模型为表型定义的自动提取提供了一个前景广阔的途径,但也存在一些重大缺陷,包括可靠性问题、产生非事实数据("幻觉")的倾向、误导性结果和潜在危害。为了应对这些挑战,我们的研究着手实现两个关键目标:(1)定义标准评估集,以确保大型语言模型的输出既有用又可靠;(2)评估从大型语言模型中提取表型定义的各种提示方法,并用我们既定的评估任务对它们进行评估。我们的研究结果表明,这项任务仍需要人工评估和验证,结果很有希望。不过,加强表型提取是可能的,这样可以减少文献查阅和评估所花费的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards automated phenotype definition extraction using large language models.

Electronic phenotyping involves a detailed analysis of both structured and unstructured data, employing rule-based methods, machine learning, natural language processing, and hybrid approaches. Currently, the development of accurate phenotype definitions demands extensive literature reviews and clinical experts, rendering the process time-consuming and inherently unscalable. Large language models offer a promising avenue for automating phenotype definition extraction but come with significant drawbacks, including reliability issues, the tendency to generate non-factual data ("hallucinations"), misleading results, and potential harm. To address these challenges, our study embarked on two key objectives: (1) defining a standard evaluation set to ensure large language models outputs are both useful and reliable and (2) evaluating various prompting approaches to extract phenotype definitions from large language models, assessing them with our established evaluation task. Our findings reveal promising results that still require human evaluation and validation for this task. However, enhanced phenotype extraction is possible, reducing the amount of time spent in literature review and evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. DeepDoublet identifies neighboring cell-dependent gene expression. Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features. Rare disease genomics and precision medicine. Common genetic etiologies of sensorineural hearing loss in Koreans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1