{"title":"使用大型语言模型提取生物调控事件:水稻文献案例研究。","authors":"Xinzhi Yao, Zhihan He, Jingbo Xia","doi":"10.1186/s44342-024-00022-3","DOIUrl":null,"url":null,"abstract":"<p><p>The extraction of biological regulation events has been a key focus in the field of biomedical nature language processing (BioNLP). However, existing methods often encounter challenges such as cascading errors in text mining pipelines and limitations in topic coverage from the selected corpus. Fortunately, the emergence of large language models (LLMs) presents a potential solution due to their robust semantic understanding and extensive knowledge base. To explore this potential, our project at the Biomedical Linked Annotation Hackathon 8 (BLAH 8) investigates the feasibility of using LLMs to extract biological regulation events. Our findings, based on the analysis of rice literature, demonstrate the promising performance of LLMs in this task, while also highlighting several concerns that must be addressed in future LLM-based application in low-resource topic.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"22 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529424/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioregulatory event extraction using large language models: a case study of rice literature.\",\"authors\":\"Xinzhi Yao, Zhihan He, Jingbo Xia\",\"doi\":\"10.1186/s44342-024-00022-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extraction of biological regulation events has been a key focus in the field of biomedical nature language processing (BioNLP). However, existing methods often encounter challenges such as cascading errors in text mining pipelines and limitations in topic coverage from the selected corpus. Fortunately, the emergence of large language models (LLMs) presents a potential solution due to their robust semantic understanding and extensive knowledge base. To explore this potential, our project at the Biomedical Linked Annotation Hackathon 8 (BLAH 8) investigates the feasibility of using LLMs to extract biological regulation events. Our findings, based on the analysis of rice literature, demonstrate the promising performance of LLMs in this task, while also highlighting several concerns that must be addressed in future LLM-based application in low-resource topic.</p>\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\"22 1\",\"pages\":\"20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44342-024-00022-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00022-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioregulatory event extraction using large language models: a case study of rice literature.
The extraction of biological regulation events has been a key focus in the field of biomedical nature language processing (BioNLP). However, existing methods often encounter challenges such as cascading errors in text mining pipelines and limitations in topic coverage from the selected corpus. Fortunately, the emergence of large language models (LLMs) presents a potential solution due to their robust semantic understanding and extensive knowledge base. To explore this potential, our project at the Biomedical Linked Annotation Hackathon 8 (BLAH 8) investigates the feasibility of using LLMs to extract biological regulation events. Our findings, based on the analysis of rice literature, demonstrate the promising performance of LLMs in this task, while also highlighting several concerns that must be addressed in future LLM-based application in low-resource topic.