整合均相催化与异相催化的定义明确的催化系统

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-10-16 DOI:10.1021/acscatal.4c0370110.1021/acscatal.4c03701
Hongli Wang, Jiashu Sun, Dongcheng He, Kang Zhao, Bo Qian and Feng Shi*, 
{"title":"整合均相催化与异相催化的定义明确的催化系统","authors":"Hongli Wang,&nbsp;Jiashu Sun,&nbsp;Dongcheng He,&nbsp;Kang Zhao,&nbsp;Bo Qian and Feng Shi*,&nbsp;","doi":"10.1021/acscatal.4c0370110.1021/acscatal.4c03701","DOIUrl":null,"url":null,"abstract":"<p >Catalysis is an eternal theme in chemical research because it is indispensable in the chemical industry. Homogeneous and heterogeneous catalysts possess their individual advantages and disadvantages, which are significantly complementary. Therefore, it is highly desirable to develop an effective and practical method for merging the benefits of homogeneous and heterogeneous catalysis. Recently, the application of organic ligands to modify heterogeneous supported catalysts has emerged as an important method to combine the advantages of heterogeneous catalysis with those of homogeneous catalysis. Ligands modified supported catalysts offer the potential to overcome major challenges in tunability and stability for supported catalysts. This Viewpoint discusses the recent progress in the synthesis and application of ligand modified supported metal catalysts in organic reactions that merge the advantages of homo- and heterogeneous catalysis. We discuss the preparation and characterization, the origin of enhanced activities, and the structure–activity relationship of ligand modified supported metal catalysts. The challenges and perspectives for future progress in this field will be given. This viewpoint provides important insights into the development of well-defined heterogeneous catalysts for integrating homogeneous and heterogeneous catalysis.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16025–16043 16025–16043"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Defined Catalytic System for Integrating Homogeneous and Heterogeneous Catalysis\",\"authors\":\"Hongli Wang,&nbsp;Jiashu Sun,&nbsp;Dongcheng He,&nbsp;Kang Zhao,&nbsp;Bo Qian and Feng Shi*,&nbsp;\",\"doi\":\"10.1021/acscatal.4c0370110.1021/acscatal.4c03701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalysis is an eternal theme in chemical research because it is indispensable in the chemical industry. Homogeneous and heterogeneous catalysts possess their individual advantages and disadvantages, which are significantly complementary. Therefore, it is highly desirable to develop an effective and practical method for merging the benefits of homogeneous and heterogeneous catalysis. Recently, the application of organic ligands to modify heterogeneous supported catalysts has emerged as an important method to combine the advantages of heterogeneous catalysis with those of homogeneous catalysis. Ligands modified supported catalysts offer the potential to overcome major challenges in tunability and stability for supported catalysts. This Viewpoint discusses the recent progress in the synthesis and application of ligand modified supported metal catalysts in organic reactions that merge the advantages of homo- and heterogeneous catalysis. We discuss the preparation and characterization, the origin of enhanced activities, and the structure–activity relationship of ligand modified supported metal catalysts. The challenges and perspectives for future progress in this field will be given. This viewpoint provides important insights into the development of well-defined heterogeneous catalysts for integrating homogeneous and heterogeneous catalysis.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"14 21\",\"pages\":\"16025–16043 16025–16043\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c03701\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c03701","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

催化作用是化学研究的永恒主题,因为它在化学工业中不可或缺。均相催化和异相催化各有优缺点,具有明显的互补性。因此,开发一种有效而实用的方法来融合均相催化和异相催化的优点是非常可取的。最近,应用有机配体修饰异相支撑催化剂已成为将异相催化和均相催化的优点结合起来的一种重要方法。配体修饰的支撑催化剂有可能克服支撑催化剂在可调性和稳定性方面的主要挑战。本视点讨论了配体修饰的支撑金属催化剂在有机反应中的合成和应用方面的最新进展,这些催化剂融合了均相催化和异相催化的优点。我们讨论了配体修饰支撑金属催化剂的制备和表征、活性增强的原因以及结构-活性关系。我们还将探讨该领域未来发展的挑战和前景。这一观点为开发定义明确的异质催化剂提供了重要的启示,有助于整合均相催化和异相催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Well-Defined Catalytic System for Integrating Homogeneous and Heterogeneous Catalysis

Catalysis is an eternal theme in chemical research because it is indispensable in the chemical industry. Homogeneous and heterogeneous catalysts possess their individual advantages and disadvantages, which are significantly complementary. Therefore, it is highly desirable to develop an effective and practical method for merging the benefits of homogeneous and heterogeneous catalysis. Recently, the application of organic ligands to modify heterogeneous supported catalysts has emerged as an important method to combine the advantages of heterogeneous catalysis with those of homogeneous catalysis. Ligands modified supported catalysts offer the potential to overcome major challenges in tunability and stability for supported catalysts. This Viewpoint discusses the recent progress in the synthesis and application of ligand modified supported metal catalysts in organic reactions that merge the advantages of homo- and heterogeneous catalysis. We discuss the preparation and characterization, the origin of enhanced activities, and the structure–activity relationship of ligand modified supported metal catalysts. The challenges and perspectives for future progress in this field will be given. This viewpoint provides important insights into the development of well-defined heterogeneous catalysts for integrating homogeneous and heterogeneous catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Catalytic Mechanism of SARS-CoV-2 3-Chymotrypsin-Like Protease as Determined by Steady-State and Pre-Steady-State Kinetics Effectively Regulating Electrooxidation of Formic Acid over Bimetallic PtCo Alloys via the Integration of Theory and Experiment Kinetic Analysis of Cyclization by the Substrate-Tolerant Lanthipeptide Synthetase ProcM The Corrosive Cl–-Induced Rapid Surface Reconstruction of Amorphous NiFeCoP Enables Efficient Seawater Splitting Developing Robust Ceria-Supported Catalysts for Catalytic NO Reduction and CO/Hydrocarbon Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1