Samir Chattopadhyay, Mun Hon Cheah, Reiner Lomoth and Leif Hammarström*,
{"title":"在联吡啶铼催化的二氧化碳还原反应中直接检测产物释放过程中的关键中间产物","authors":"Samir Chattopadhyay, Mun Hon Cheah, Reiner Lomoth and Leif Hammarström*, ","doi":"10.1021/acscatal.4c0604410.1021/acscatal.4c06044","DOIUrl":null,"url":null,"abstract":"<p >Rhenium bipyridine tricarbonyl complexes, <i>fac</i>-[Re(bpy)(CO)<sub>3</sub>X]<sup><i>n</i>+</sup>, are highly effective in selectively converting CO<sub>2</sub> to CO under electrochemical and photochemical conditions. Despite numerous mechanistic studies aimed at understanding its CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) pathway, the intermediates further into the catalytic cycle have escaped detection, and the steps leading to product release remained elusive. In this study, employing stopped-flow mixing coupled with time-resolved infrared spectroscopy, we observed, for the first time, the reduced Re-tetracarbonyl species, [Re(bpy)(CO)<sub>4</sub>]<sup>0</sup>, with a half-life of approximately 55 ms in acetonitrile solvent. This intermediate is proposed to be common in both electrochemical and photochemical CO<sub>2</sub>RR. Furthermore, we directly observed the release of the product (CO) from this intermediate. Additionally, we detected the accumulation of [Re(bpy)(CO)<sub>3</sub>(CH<sub>3</sub>CN)]<sup>+</sup> as a byproduct following product release, a significant side reaction under conditions with a limited supply of reducing equivalents mirroring photochemical conditions. The process could be unambiguously attributed to an electron transfer-catalyzed ligand substitution reaction involving [Re(bpy)(CO)<sub>4</sub>]<sup>0</sup> by simultaneous real-time detection of all involved species. We believe that this side reaction significantly impacts the CO<sub>2</sub>RR efficiency of this class of catalysts under photochemical conditions or during electrocatalysis at mild overpotentials.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16324–16334 16324–16334"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscatal.4c06044","citationCount":"0","resultStr":"{\"title\":\"Direct Detection of Key Intermediates during the Product Release in Rhenium Bipyridine-Catalyzed CO2 Reduction Reaction\",\"authors\":\"Samir Chattopadhyay, Mun Hon Cheah, Reiner Lomoth and Leif Hammarström*, \",\"doi\":\"10.1021/acscatal.4c0604410.1021/acscatal.4c06044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rhenium bipyridine tricarbonyl complexes, <i>fac</i>-[Re(bpy)(CO)<sub>3</sub>X]<sup><i>n</i>+</sup>, are highly effective in selectively converting CO<sub>2</sub> to CO under electrochemical and photochemical conditions. Despite numerous mechanistic studies aimed at understanding its CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) pathway, the intermediates further into the catalytic cycle have escaped detection, and the steps leading to product release remained elusive. In this study, employing stopped-flow mixing coupled with time-resolved infrared spectroscopy, we observed, for the first time, the reduced Re-tetracarbonyl species, [Re(bpy)(CO)<sub>4</sub>]<sup>0</sup>, with a half-life of approximately 55 ms in acetonitrile solvent. This intermediate is proposed to be common in both electrochemical and photochemical CO<sub>2</sub>RR. Furthermore, we directly observed the release of the product (CO) from this intermediate. Additionally, we detected the accumulation of [Re(bpy)(CO)<sub>3</sub>(CH<sub>3</sub>CN)]<sup>+</sup> as a byproduct following product release, a significant side reaction under conditions with a limited supply of reducing equivalents mirroring photochemical conditions. The process could be unambiguously attributed to an electron transfer-catalyzed ligand substitution reaction involving [Re(bpy)(CO)<sub>4</sub>]<sup>0</sup> by simultaneous real-time detection of all involved species. We believe that this side reaction significantly impacts the CO<sub>2</sub>RR efficiency of this class of catalysts under photochemical conditions or during electrocatalysis at mild overpotentials.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"14 21\",\"pages\":\"16324–16334 16324–16334\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscatal.4c06044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c06044\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c06044","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Direct Detection of Key Intermediates during the Product Release in Rhenium Bipyridine-Catalyzed CO2 Reduction Reaction
Rhenium bipyridine tricarbonyl complexes, fac-[Re(bpy)(CO)3X]n+, are highly effective in selectively converting CO2 to CO under electrochemical and photochemical conditions. Despite numerous mechanistic studies aimed at understanding its CO2 reduction reaction (CO2RR) pathway, the intermediates further into the catalytic cycle have escaped detection, and the steps leading to product release remained elusive. In this study, employing stopped-flow mixing coupled with time-resolved infrared spectroscopy, we observed, for the first time, the reduced Re-tetracarbonyl species, [Re(bpy)(CO)4]0, with a half-life of approximately 55 ms in acetonitrile solvent. This intermediate is proposed to be common in both electrochemical and photochemical CO2RR. Furthermore, we directly observed the release of the product (CO) from this intermediate. Additionally, we detected the accumulation of [Re(bpy)(CO)3(CH3CN)]+ as a byproduct following product release, a significant side reaction under conditions with a limited supply of reducing equivalents mirroring photochemical conditions. The process could be unambiguously attributed to an electron transfer-catalyzed ligand substitution reaction involving [Re(bpy)(CO)4]0 by simultaneous real-time detection of all involved species. We believe that this side reaction significantly impacts the CO2RR efficiency of this class of catalysts under photochemical conditions or during electrocatalysis at mild overpotentials.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.