用于可持续能源和环境应用的金属有机框架的计算设计:连接理论与实验

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-10-31 DOI:10.1016/j.mseb.2024.117765
Qiang Ma , Yi Wang , Xianglong Zhang , Qianchen Zhao , Jinjun guo , Jiahu Guo , Xu Ren , Jin Huang , Yingjie Zhang , Yonghong Xie , Jiming Hao
{"title":"用于可持续能源和环境应用的金属有机框架的计算设计:连接理论与实验","authors":"Qiang Ma ,&nbsp;Yi Wang ,&nbsp;Xianglong Zhang ,&nbsp;Qianchen Zhao ,&nbsp;Jinjun guo ,&nbsp;Jiahu Guo ,&nbsp;Xu Ren ,&nbsp;Jin Huang ,&nbsp;Yingjie Zhang ,&nbsp;Yonghong Xie ,&nbsp;Jiming Hao","doi":"10.1016/j.mseb.2024.117765","DOIUrl":null,"url":null,"abstract":"<div><div>This review explores the pivotal role of computational approaches in designing and developing Metal-Organic Frameworks (MOFs) for sustainable energy and environmental applications. As demand for advanced materials in energy conversion, storage, and environmental remediation intensifies, the synergy between theoretical simulations and experimental research has become critical. We provide a systematic overview of recent advancements in computational strategies guiding MOF synthesis and optimization, focusing on how these approaches offer insights into MOF mechanisms and working principles. The review examines fundamental computational techniques, including density functional theory, molecular dynamics, and machine learning, exploring their application in predicting and enhancing MOF performance for gas storage, catalysis, and pollutant capture. Through analysis of case studies, we demonstrate how computational modeling has successfully improved MOF performance in real-world scenarios. We also address challenges in bridging theory and experiment, discussing strategies for enhancing model accuracy and applicability.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117765"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational design of Metal-Organic Frameworks for sustainable energy and environmental applications: Bridging theory and experiment\",\"authors\":\"Qiang Ma ,&nbsp;Yi Wang ,&nbsp;Xianglong Zhang ,&nbsp;Qianchen Zhao ,&nbsp;Jinjun guo ,&nbsp;Jiahu Guo ,&nbsp;Xu Ren ,&nbsp;Jin Huang ,&nbsp;Yingjie Zhang ,&nbsp;Yonghong Xie ,&nbsp;Jiming Hao\",\"doi\":\"10.1016/j.mseb.2024.117765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review explores the pivotal role of computational approaches in designing and developing Metal-Organic Frameworks (MOFs) for sustainable energy and environmental applications. As demand for advanced materials in energy conversion, storage, and environmental remediation intensifies, the synergy between theoretical simulations and experimental research has become critical. We provide a systematic overview of recent advancements in computational strategies guiding MOF synthesis and optimization, focusing on how these approaches offer insights into MOF mechanisms and working principles. The review examines fundamental computational techniques, including density functional theory, molecular dynamics, and machine learning, exploring their application in predicting and enhancing MOF performance for gas storage, catalysis, and pollutant capture. Through analysis of case studies, we demonstrate how computational modeling has successfully improved MOF performance in real-world scenarios. We also address challenges in bridging theory and experiment, discussing strategies for enhancing model accuracy and applicability.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"volume\":\"311 \",\"pages\":\"Article 117765\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510724005944\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005944","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述探讨了计算方法在设计和开发用于可持续能源和环境应用的金属有机框架(MOFs)中的关键作用。随着能源转换、储存和环境修复领域对先进材料的需求日益增长,理论模拟与实验研究之间的协同作用变得至关重要。我们系统地综述了指导 MOF 合成和优化的计算策略的最新进展,重点介绍了这些方法如何深入了解 MOF 的机理和工作原理。综述研究了基本计算技术,包括密度泛函理论、分子动力学和机器学习,探讨了这些技术在预测和提高 MOF 在气体储存、催化和污染物捕获方面的性能方面的应用。通过对案例的分析,我们展示了计算建模是如何在现实世界中成功提高 MOF 性能的。我们还探讨了理论与实验之间的挑战,讨论了提高模型准确性和适用性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational design of Metal-Organic Frameworks for sustainable energy and environmental applications: Bridging theory and experiment
This review explores the pivotal role of computational approaches in designing and developing Metal-Organic Frameworks (MOFs) for sustainable energy and environmental applications. As demand for advanced materials in energy conversion, storage, and environmental remediation intensifies, the synergy between theoretical simulations and experimental research has become critical. We provide a systematic overview of recent advancements in computational strategies guiding MOF synthesis and optimization, focusing on how these approaches offer insights into MOF mechanisms and working principles. The review examines fundamental computational techniques, including density functional theory, molecular dynamics, and machine learning, exploring their application in predicting and enhancing MOF performance for gas storage, catalysis, and pollutant capture. Through analysis of case studies, we demonstrate how computational modeling has successfully improved MOF performance in real-world scenarios. We also address challenges in bridging theory and experiment, discussing strategies for enhancing model accuracy and applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Biocompatible Mn and Cu dual-doped ZnS nanosheets for enhanced the photocatalytic activity under sunlight irradiation for wastewater treatment and embedded with PVA polymer for reusability Study on the mechanism of photocatalytic activity enhancement of Ag/Ag3PO4/PDI-2 supramolecular Z-scheme heterojunction photocatalyst A comparative study on the lamella effect and properties of atomized iron powder and reduced iron powder in Fe-based soft magnetic composites Effect of temperature and capillary number on wettability and contact angle hysteresis of various materials. Modeling taking into account porosity Synthesis and enhanced electrical properties of Ag-doped α-Fe2O3 nanoparticles in PVA films for nanoelectronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1