{"title":"由 [MS4]2- 阴离子稳定的双(4-氨基吡啶)和双(2-氨基-6-甲基吡啶)阳离子:合成、晶体结构、Hirshfeld 表面分析和硫转移反应","authors":"","doi":"10.1016/j.poly.2024.117272","DOIUrl":null,"url":null,"abstract":"<div><div>Four new organic ammonium tetrasulfidometallates: (4-aminopyridinium)<sub>2</sub>[MoS<sub>4</sub>]·H<sub>2</sub>O <strong>1</strong>, (4-aminopyridinium)<sub>2</sub>[WS<sub>4</sub>]·H<sub>2</sub>O <strong>2</strong>, (2-amino-6-methylpyridinium)<sub>2</sub>[MoS<sub>4</sub>] <strong>3</strong>, and (2-amino-6-methylpyridinium)<sub>2</sub>[WS<sub>4</sub>] <strong>4</strong> have been synthesized by a well-known base promoted cation exchange method. All compounds were characterized by elemental analysis, IR/Raman/UV–Vis spectroscopy, thermogravimetric analysis, and X-ray crystallography. The structures of <strong>1</strong> and <strong>2</strong> consist of unique tetrahedral [MoS<sub>4</sub>]<sup>2−</sup> and [WS<sub>4</sub>]<sup>2−</sup> dianions, which are charge-balanced by crystallographically independent 4-aminopyridinium monocations. Additionally, both have a lattice water molecule, which contributes to the overall stability of their structures. In compounds <strong>3</strong> and <strong>4</strong>, 4-aminopyridinium of <strong>1</strong> and <strong>2</strong> are replaced by 2-amino-6-methylpyridinium cation and lack lattice water. The different H-bonding interactions <em>viz N</em><img><em>H</em>⋯<em>S</em>, <em>C</em><img><em>H</em>⋯<em>S</em>, <em>N</em><img><em>H</em>⋯<em>O</em> and <em>O</em><img><em>H</em>⋯<em>O</em> are observed in <strong>1</strong> and <strong>2</strong>, which are reduced to two <em>viz. N</em><img><em>H</em>⋯<em>S</em> and <em>C</em><img><em>H</em>⋯<em>S</em> in <strong>3</strong> and <strong>4</strong>. The weak interactions (<em>N</em><img><em>H</em>⋯<em>O</em> and <em>O</em><img><em>H</em>⋯<em>O</em>) originating from lattice water further interlink cations with [MoS<sub>4</sub>]<sup>2−</sup> and [WS<sub>4</sub>]<sup>2−</sup> anions forming extended networks in <strong>1</strong> and <strong>2</strong>. To understand the importance of intermolecular interactions in the structures of <strong>1</strong>–<strong>4</strong>, the Hirshfeld surface analyses were performed. The enrichment ratio (E) in the structures of compounds <strong>1</strong>–<strong>4</strong> was obtained. Compounds <strong>1</strong>–<strong>4</strong> were tested for their sulfur transfer ability. Only compound <strong>1</strong> showed a predominant disulfide product formation in reaction with 1,3-dibromopropane.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bis(4-aminopyridinium) and bis(2-amino-6-methylpyridinium) cations stabilised by [MS4]2− anions: Synthesis, crystal structures, Hirshfeld surface analysis and sulfur transfer reactions\",\"authors\":\"\",\"doi\":\"10.1016/j.poly.2024.117272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Four new organic ammonium tetrasulfidometallates: (4-aminopyridinium)<sub>2</sub>[MoS<sub>4</sub>]·H<sub>2</sub>O <strong>1</strong>, (4-aminopyridinium)<sub>2</sub>[WS<sub>4</sub>]·H<sub>2</sub>O <strong>2</strong>, (2-amino-6-methylpyridinium)<sub>2</sub>[MoS<sub>4</sub>] <strong>3</strong>, and (2-amino-6-methylpyridinium)<sub>2</sub>[WS<sub>4</sub>] <strong>4</strong> have been synthesized by a well-known base promoted cation exchange method. All compounds were characterized by elemental analysis, IR/Raman/UV–Vis spectroscopy, thermogravimetric analysis, and X-ray crystallography. The structures of <strong>1</strong> and <strong>2</strong> consist of unique tetrahedral [MoS<sub>4</sub>]<sup>2−</sup> and [WS<sub>4</sub>]<sup>2−</sup> dianions, which are charge-balanced by crystallographically independent 4-aminopyridinium monocations. Additionally, both have a lattice water molecule, which contributes to the overall stability of their structures. In compounds <strong>3</strong> and <strong>4</strong>, 4-aminopyridinium of <strong>1</strong> and <strong>2</strong> are replaced by 2-amino-6-methylpyridinium cation and lack lattice water. The different H-bonding interactions <em>viz N</em><img><em>H</em>⋯<em>S</em>, <em>C</em><img><em>H</em>⋯<em>S</em>, <em>N</em><img><em>H</em>⋯<em>O</em> and <em>O</em><img><em>H</em>⋯<em>O</em> are observed in <strong>1</strong> and <strong>2</strong>, which are reduced to two <em>viz. N</em><img><em>H</em>⋯<em>S</em> and <em>C</em><img><em>H</em>⋯<em>S</em> in <strong>3</strong> and <strong>4</strong>. The weak interactions (<em>N</em><img><em>H</em>⋯<em>O</em> and <em>O</em><img><em>H</em>⋯<em>O</em>) originating from lattice water further interlink cations with [MoS<sub>4</sub>]<sup>2−</sup> and [WS<sub>4</sub>]<sup>2−</sup> anions forming extended networks in <strong>1</strong> and <strong>2</strong>. To understand the importance of intermolecular interactions in the structures of <strong>1</strong>–<strong>4</strong>, the Hirshfeld surface analyses were performed. The enrichment ratio (E) in the structures of compounds <strong>1</strong>–<strong>4</strong> was obtained. Compounds <strong>1</strong>–<strong>4</strong> were tested for their sulfur transfer ability. Only compound <strong>1</strong> showed a predominant disulfide product formation in reaction with 1,3-dibromopropane.</div></div>\",\"PeriodicalId\":20278,\"journal\":{\"name\":\"Polyhedron\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polyhedron\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0277538724004480\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724004480","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Bis(4-aminopyridinium) and bis(2-amino-6-methylpyridinium) cations stabilised by [MS4]2− anions: Synthesis, crystal structures, Hirshfeld surface analysis and sulfur transfer reactions
Four new organic ammonium tetrasulfidometallates: (4-aminopyridinium)2[MoS4]·H2O 1, (4-aminopyridinium)2[WS4]·H2O 2, (2-amino-6-methylpyridinium)2[MoS4] 3, and (2-amino-6-methylpyridinium)2[WS4] 4 have been synthesized by a well-known base promoted cation exchange method. All compounds were characterized by elemental analysis, IR/Raman/UV–Vis spectroscopy, thermogravimetric analysis, and X-ray crystallography. The structures of 1 and 2 consist of unique tetrahedral [MoS4]2− and [WS4]2− dianions, which are charge-balanced by crystallographically independent 4-aminopyridinium monocations. Additionally, both have a lattice water molecule, which contributes to the overall stability of their structures. In compounds 3 and 4, 4-aminopyridinium of 1 and 2 are replaced by 2-amino-6-methylpyridinium cation and lack lattice water. The different H-bonding interactions viz NH⋯S, CH⋯S, NH⋯O and OH⋯O are observed in 1 and 2, which are reduced to two viz. NH⋯S and CH⋯S in 3 and 4. The weak interactions (NH⋯O and OH⋯O) originating from lattice water further interlink cations with [MoS4]2− and [WS4]2− anions forming extended networks in 1 and 2. To understand the importance of intermolecular interactions in the structures of 1–4, the Hirshfeld surface analyses were performed. The enrichment ratio (E) in the structures of compounds 1–4 was obtained. Compounds 1–4 were tested for their sulfur transfer ability. Only compound 1 showed a predominant disulfide product formation in reaction with 1,3-dibromopropane.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.