Weijie Fang, Chaofan Liu, Jiang Wu, Weikai Fan, Le Chen, Zaiguo Fu, Lin Peng, Ping He, Jia Lin, Zhongwei Chen
{"title":"苔藓状 CoB/CeO2 异质结作为碱性条件下氧进化反应的高效电催化剂","authors":"Weijie Fang, Chaofan Liu, Jiang Wu, Weikai Fan, Le Chen, Zaiguo Fu, Lin Peng, Ping He, Jia Lin, Zhongwei Chen","doi":"10.1039/d4qi02325k","DOIUrl":null,"url":null,"abstract":"Heterostructure construction has become increasingly recognized as an effective strategy to enhance oxygen evolution reaction (OER) performance due to the exposed active surfaces and improved mass/charge transfer. Inspired by natural plant structures, this study develops a unique moss-like amorphous/crystalline (CoB/CeO2) heterojunction. This distinctive moss-like morphology facilitates the formation of staggered sheet structures in the catalyst, providing more active sites and open channels for reaction intermediates and gas release. Benefiting from the hydrophilic properties offered by the moss-like morphology, CoB/CeO2 exhibits excellent OER catalytic performance in 1M KOH, requiring only 247 mV at 100 mA cm−2. Physicochemical characterization and mechanistic studies reveal that the close nanoscale features between CoB and CeO2 create abundant binary interfaces, optimize the electronic configuration, induce changes in electronic states, and provide abundant defect sites, thereby enhancing charge transfer capabilities. This work presents a new paradigm for the design of efficient and durable OER electrocatalysts.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"22 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moss-like CoB/CeO2 heterojunction as an efficient electrocatalyst for oxygen evolution reaction under alkaline conditions\",\"authors\":\"Weijie Fang, Chaofan Liu, Jiang Wu, Weikai Fan, Le Chen, Zaiguo Fu, Lin Peng, Ping He, Jia Lin, Zhongwei Chen\",\"doi\":\"10.1039/d4qi02325k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterostructure construction has become increasingly recognized as an effective strategy to enhance oxygen evolution reaction (OER) performance due to the exposed active surfaces and improved mass/charge transfer. Inspired by natural plant structures, this study develops a unique moss-like amorphous/crystalline (CoB/CeO2) heterojunction. This distinctive moss-like morphology facilitates the formation of staggered sheet structures in the catalyst, providing more active sites and open channels for reaction intermediates and gas release. Benefiting from the hydrophilic properties offered by the moss-like morphology, CoB/CeO2 exhibits excellent OER catalytic performance in 1M KOH, requiring only 247 mV at 100 mA cm−2. Physicochemical characterization and mechanistic studies reveal that the close nanoscale features between CoB and CeO2 create abundant binary interfaces, optimize the electronic configuration, induce changes in electronic states, and provide abundant defect sites, thereby enhancing charge transfer capabilities. This work presents a new paradigm for the design of efficient and durable OER electrocatalysts.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02325k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02325k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
由于活性表面外露和质量/电荷转移得到改善,异质结构作为一种提高氧进化反应(OER)性能的有效策略已被越来越多的人所认可。受天然植物结构的启发,本研究开发了一种独特的苔藓状非晶/晶体(CoB/CeO2)异质结。这种独特的苔藓状形态有利于在催化剂中形成交错的片状结构,为反应中间体和气体释放提供更多的活性位点和开放通道。得益于苔藓状形态带来的亲水性能,CoB/CeO2 在 1M KOH 中表现出卓越的 OER 催化性能,在 100 mA cm-2 的条件下仅需 247 mV。理化表征和机理研究表明,CoB 和 CeO2 之间紧密的纳米级特征创造了丰富的二元界面,优化了电子构型,引起了电子状态的变化,并提供了丰富的缺陷位点,从而增强了电荷转移能力。这项工作为设计高效、耐用的 OER 电催化剂提供了一种新的范例。
Moss-like CoB/CeO2 heterojunction as an efficient electrocatalyst for oxygen evolution reaction under alkaline conditions
Heterostructure construction has become increasingly recognized as an effective strategy to enhance oxygen evolution reaction (OER) performance due to the exposed active surfaces and improved mass/charge transfer. Inspired by natural plant structures, this study develops a unique moss-like amorphous/crystalline (CoB/CeO2) heterojunction. This distinctive moss-like morphology facilitates the formation of staggered sheet structures in the catalyst, providing more active sites and open channels for reaction intermediates and gas release. Benefiting from the hydrophilic properties offered by the moss-like morphology, CoB/CeO2 exhibits excellent OER catalytic performance in 1M KOH, requiring only 247 mV at 100 mA cm−2. Physicochemical characterization and mechanistic studies reveal that the close nanoscale features between CoB and CeO2 create abundant binary interfaces, optimize the electronic configuration, induce changes in electronic states, and provide abundant defect sites, thereby enhancing charge transfer capabilities. This work presents a new paradigm for the design of efficient and durable OER electrocatalysts.