{"title":"灵活计算:改进弹性计算中资源分配和调度的新框架","authors":"Weipeng Cao;Jiongjiong Gu;Zhong Ming;Zhiyuan Cai;Yuzhao Wang;Changping Ji;Zhijiao Xiao;Yuhong Feng;Ye Liu;Liang-Jie Zhang","doi":"10.1109/TSC.2024.3489433","DOIUrl":null,"url":null,"abstract":"Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math>$> $</tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math>$< $</tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"198-211"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing\",\"authors\":\"Weipeng Cao;Jiongjiong Gu;Zhong Ming;Zhiyuan Cai;Yuzhao Wang;Changping Ji;Zhijiao Xiao;Yuhong Feng;Ye Liu;Liang-Jie Zhang\",\"doi\":\"10.1109/TSC.2024.3489433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math>$> $</tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math>$< $</tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 1\",\"pages\":\"198-211\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740339/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740339/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing
Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation ($> $80%) but with low utilization ($< $25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.