灵活计算:改进弹性计算中资源分配和调度的新框架

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Services Computing Pub Date : 2024-10-31 DOI:10.1109/TSC.2024.3489433
Weipeng Cao;Jiongjiong Gu;Zhong Ming;Zhiyuan Cai;Yuzhao Wang;Changping Ji;Zhijiao Xiao;Yuhong Feng;Ye Liu;Liang-Jie Zhang
{"title":"灵活计算:改进弹性计算中资源分配和调度的新框架","authors":"Weipeng Cao;Jiongjiong Gu;Zhong Ming;Zhiyuan Cai;Yuzhao Wang;Changping Ji;Zhijiao Xiao;Yuhong Feng;Ye Liu;Liang-Jie Zhang","doi":"10.1109/TSC.2024.3489433","DOIUrl":null,"url":null,"abstract":"Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math>$&gt; $</tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math>$&lt; $</tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"198-211"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing\",\"authors\":\"Weipeng Cao;Jiongjiong Gu;Zhong Ming;Zhiyuan Cai;Yuzhao Wang;Changping Ji;Zhijiao Xiao;Yuhong Feng;Ye Liu;Liang-Jie Zhang\",\"doi\":\"10.1109/TSC.2024.3489433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation (<inline-formula><tex-math>$&gt; $</tex-math></inline-formula>80%) but with low utilization (<inline-formula><tex-math>$&lt; $</tex-math></inline-formula>25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 1\",\"pages\":\"198-211\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740339/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740339/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible Computing: A New Framework for Improving Resource Allocation and Scheduling in Elastic Computing
Since the advent of cloud computing, Elastic Computing (EC) has become the standard architecture for resource allocation and scheduling. EC typically allocates computing resources based on predefined specifications, such as virtual machine or container flavors. However, these flavors are often constrained by fixed CPU-to-memory ratios, which frequently fail to match the actual resource needs of applications. As a result, cloud providers experience high resource allocation rates nearing saturation ($> $80%) but with low utilization ($< $25%). This study introduces Flexible Computing (FC), a novel approach to resource allocation and scheduling. Unlike EC, FC allocates resources based on an application resource usage profile, derived from the historical resource consumption of workloads, rather than relying on fixed specifications. Additionally, FC incorporates a real-time performance degradation detection mechanism to address performance issues caused by the noisy-neighbor effect when colocated workloads interfere with each other. FC dynamically adjusts resource allocation according to actual usage, ensuring that application performance meets Service Level Agreements (SLAs), while preventing resource waste and performance degradation from improper resource over-commitment. Large-scale experimental validations conducted on the FC architecture within Huawei Cloud data centers demonstrate that, compared to EC, FC can reduce computing resource consumption by over 33% while managing the same workloads. Furthermore, FC's real-time performance degradation detection model achieves a prediction error of less than 5% across various testing environments, highlighting its commercial viability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
期刊最新文献
An Active Defense Adjudication Method Based on Adaptive Anomaly Sensing for Mimic IoT Next PoI Recommendation Based on Graph Convolutional Networks and Multiple Context-Awareness Behavior Tomographer: Identifying Hidden Cybercrimes by Behavior Interior Structure Modeling DRMQ: Dynamic Resource Management for Enhanced QoS in Collaborative Edge-Edge Industrial Environments Joint Service Deployment and Task Offloading for Datacenters with Edge Heterogeneous Servers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1