Yaning Yang;Xiao Du;Yutong Ye;Jiepin Ding;Ting Wang;Mingsong Chen;Keqin Li
{"title":"用于无服务器边缘计算功能卸载的多目标深度强化学习","authors":"Yaning Yang;Xiao Du;Yutong Ye;Jiepin Ding;Ting Wang;Mingsong Chen;Keqin Li","doi":"10.1109/TSC.2024.3489443","DOIUrl":null,"url":null,"abstract":"Function offloading problems play a crucial role in optimizing the performance of applications in serverless edge computing (SEC). Existing research has extensively explored function offloading strategies based on optimizing a single objective. However, a significant challenge arises when users expect to optimize multiple objectives according to the relative importance of these objectives. This challenge becomes particularly pronounced when the relative importance of the objectives dynamically shifts. Consequently, there is an urgent need for research into multi-objective function offloading methods. In this paper, we redefine the SEC function offloading problem as a dynamic multi-objective optimization issue and propose a novel approach based on Multi-objective Reinforcement Learning (MORL) called MOSEC. MOSEC can coordinately optimize three objectives, i.e., application completion time, User Device (UD) energy consumption, and user cost. To reduce the impact of extrapolation errors, MOSEC integrates a Near-on Experience Replay (NER) strategy during the model training. Furthermore, MOSEC adopts our proposed Earliest First (EF) scheme to maintain the policies learned previously, which can efficiently mitigate the catastrophic policy forgetting problem. Extensive experiments conducted on various generated applications demonstrate the superiority of MOSEC over state-of-the-art multi-objective optimization algorithms.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"288-301"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Deep Reinforcement Learning for Function Offloading in Serverless Edge Computing\",\"authors\":\"Yaning Yang;Xiao Du;Yutong Ye;Jiepin Ding;Ting Wang;Mingsong Chen;Keqin Li\",\"doi\":\"10.1109/TSC.2024.3489443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function offloading problems play a crucial role in optimizing the performance of applications in serverless edge computing (SEC). Existing research has extensively explored function offloading strategies based on optimizing a single objective. However, a significant challenge arises when users expect to optimize multiple objectives according to the relative importance of these objectives. This challenge becomes particularly pronounced when the relative importance of the objectives dynamically shifts. Consequently, there is an urgent need for research into multi-objective function offloading methods. In this paper, we redefine the SEC function offloading problem as a dynamic multi-objective optimization issue and propose a novel approach based on Multi-objective Reinforcement Learning (MORL) called MOSEC. MOSEC can coordinately optimize three objectives, i.e., application completion time, User Device (UD) energy consumption, and user cost. To reduce the impact of extrapolation errors, MOSEC integrates a Near-on Experience Replay (NER) strategy during the model training. Furthermore, MOSEC adopts our proposed Earliest First (EF) scheme to maintain the policies learned previously, which can efficiently mitigate the catastrophic policy forgetting problem. Extensive experiments conducted on various generated applications demonstrate the superiority of MOSEC over state-of-the-art multi-objective optimization algorithms.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 1\",\"pages\":\"288-301\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740030/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740030/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-Objective Deep Reinforcement Learning for Function Offloading in Serverless Edge Computing
Function offloading problems play a crucial role in optimizing the performance of applications in serverless edge computing (SEC). Existing research has extensively explored function offloading strategies based on optimizing a single objective. However, a significant challenge arises when users expect to optimize multiple objectives according to the relative importance of these objectives. This challenge becomes particularly pronounced when the relative importance of the objectives dynamically shifts. Consequently, there is an urgent need for research into multi-objective function offloading methods. In this paper, we redefine the SEC function offloading problem as a dynamic multi-objective optimization issue and propose a novel approach based on Multi-objective Reinforcement Learning (MORL) called MOSEC. MOSEC can coordinately optimize three objectives, i.e., application completion time, User Device (UD) energy consumption, and user cost. To reduce the impact of extrapolation errors, MOSEC integrates a Near-on Experience Replay (NER) strategy during the model training. Furthermore, MOSEC adopts our proposed Earliest First (EF) scheme to maintain the policies learned previously, which can efficiently mitigate the catastrophic policy forgetting problem. Extensive experiments conducted on various generated applications demonstrate the superiority of MOSEC over state-of-the-art multi-objective optimization algorithms.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.