{"title":"生成音频驱动视频会议的多模态语义通信","authors":"Haonan Tong;Haopeng Li;Hongyang Du;Zhaohui Yang;Changchuan Yin;Dusit Niyato","doi":"10.1109/LWC.2024.3488859","DOIUrl":null,"url":null,"abstract":"This letter studies an efficient multimodal data communication scheme for video conferencing. In our considered system, a speaker gives a talk to the audiences, with talking head video and audio being transmitted. Since the speaker does not frequently change posture and high-fidelity transmission of audio (speech and music) is required, redundant visual video data exists and can be removed by generating the video from the audio. To this end, we propose a wave-to-video (Wav2Vid) system, an efficient video transmission framework that reduces transmitted data by generating talking head video from audio. In particular, full-duration audio and short-duration video data are synchronously transmitted through a wireless channel, with neural networks (NNs) extracting and encoding audio and video semantics. The receiver then combines the decoded audio and video data, as well as uses a generative adversarial network (GAN) based model to generate the lip movement videos of the speaker. Simulation results show that the proposed Wav2Vid system can reduce the amount of transmitted data by up to 83% while maintaining the perceptual quality of the generated conferencing video.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 1","pages":"93-97"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Semantic Communication for Generative Audio-Driven Video Conferencing\",\"authors\":\"Haonan Tong;Haopeng Li;Hongyang Du;Zhaohui Yang;Changchuan Yin;Dusit Niyato\",\"doi\":\"10.1109/LWC.2024.3488859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter studies an efficient multimodal data communication scheme for video conferencing. In our considered system, a speaker gives a talk to the audiences, with talking head video and audio being transmitted. Since the speaker does not frequently change posture and high-fidelity transmission of audio (speech and music) is required, redundant visual video data exists and can be removed by generating the video from the audio. To this end, we propose a wave-to-video (Wav2Vid) system, an efficient video transmission framework that reduces transmitted data by generating talking head video from audio. In particular, full-duration audio and short-duration video data are synchronously transmitted through a wireless channel, with neural networks (NNs) extracting and encoding audio and video semantics. The receiver then combines the decoded audio and video data, as well as uses a generative adversarial network (GAN) based model to generate the lip movement videos of the speaker. Simulation results show that the proposed Wav2Vid system can reduce the amount of transmitted data by up to 83% while maintaining the perceptual quality of the generated conferencing video.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"14 1\",\"pages\":\"93-97\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740049/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740049/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multimodal Semantic Communication for Generative Audio-Driven Video Conferencing
This letter studies an efficient multimodal data communication scheme for video conferencing. In our considered system, a speaker gives a talk to the audiences, with talking head video and audio being transmitted. Since the speaker does not frequently change posture and high-fidelity transmission of audio (speech and music) is required, redundant visual video data exists and can be removed by generating the video from the audio. To this end, we propose a wave-to-video (Wav2Vid) system, an efficient video transmission framework that reduces transmitted data by generating talking head video from audio. In particular, full-duration audio and short-duration video data are synchronously transmitted through a wireless channel, with neural networks (NNs) extracting and encoding audio and video semantics. The receiver then combines the decoded audio and video data, as well as uses a generative adversarial network (GAN) based model to generate the lip movement videos of the speaker. Simulation results show that the proposed Wav2Vid system can reduce the amount of transmitted data by up to 83% while maintaining the perceptual quality of the generated conferencing video.
期刊介绍:
IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.