斯蒂费尔曼菲尔德上优化的 NEPv 方法理论

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-31 DOI:10.1007/s10208-024-09687-2
Ren-Cang Li
{"title":"斯蒂费尔曼菲尔德上优化的 NEPv 方法理论","authors":"Ren-Cang Li","doi":"10.1007/s10208-024-09687-2","DOIUrl":null,"url":null,"abstract":"<p>The NEPv approach has been increasingly used lately for optimization on the Stiefel manifold arising from machine learning. General speaking, the approach first turns the first order optimality condition into a nonlinear eigenvalue problem with eigenvector dependency (NEPv) and then solve the nonlinear problem via some variations of the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a proper SCF iteration so that a maximizer is found at the end. Currently, each use of the approach is very much individualized, especially in its convergence analysis phase to show that the approach does work or otherwise. Related, the NPDo approach is recently proposed for the sum of coupled traces and it seeks to turn the first order optimality condition into a nonlinear polar decomposition with orthogonal factor dependency (NPDo). In this paper, two unifying frameworks are established, one for each approach. Each framework is built upon a basic assumption, under which globally convergence to a stationary point is guaranteed and during the SCF iterative process that leads to the stationary point, the objective function increases monotonically. Also the notion of atomic function for each approach is proposed, and the atomic functions include commonly used matrix traces of linear and quadratic forms as special ones. It is shown that the basic assumptions of the approaches are satisfied by their respective atomic functions and, more importantly, by convex compositions of their respective atomic functions. Together they provide a large collection of objectives for which either one of approaches or both are guaranteed to work, respectively.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Theory of the NEPv Approach for Optimization on the Stiefel Manifold\",\"authors\":\"Ren-Cang Li\",\"doi\":\"10.1007/s10208-024-09687-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The NEPv approach has been increasingly used lately for optimization on the Stiefel manifold arising from machine learning. General speaking, the approach first turns the first order optimality condition into a nonlinear eigenvalue problem with eigenvector dependency (NEPv) and then solve the nonlinear problem via some variations of the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a proper SCF iteration so that a maximizer is found at the end. Currently, each use of the approach is very much individualized, especially in its convergence analysis phase to show that the approach does work or otherwise. Related, the NPDo approach is recently proposed for the sum of coupled traces and it seeks to turn the first order optimality condition into a nonlinear polar decomposition with orthogonal factor dependency (NPDo). In this paper, two unifying frameworks are established, one for each approach. Each framework is built upon a basic assumption, under which globally convergence to a stationary point is guaranteed and during the SCF iterative process that leads to the stationary point, the objective function increases monotonically. Also the notion of atomic function for each approach is proposed, and the atomic functions include commonly used matrix traces of linear and quadratic forms as special ones. It is shown that the basic assumptions of the approaches are satisfied by their respective atomic functions and, more importantly, by convex compositions of their respective atomic functions. Together they provide a large collection of objectives for which either one of approaches or both are guaranteed to work, respectively.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09687-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09687-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

近来,NEPv 方法越来越多地用于机器学习所产生的 Stiefel 流形上的优化。一般来说,该方法首先将一阶最优条件转化为具有特征向量依赖性的非线性特征值问题(NEPv),然后通过自洽场(SCF)迭代的一些变化来解决非线性问题。然而,困难在于如何设计适当的 SCF 迭代,以便最终找到最大值。目前,该方法的每次使用都非常个性化,特别是在收敛分析阶段,以显示该方法是否有效。与此相关,最近针对耦合迹线总和提出了 NPDo 方法,该方法试图将一阶最优条件转化为具有正交因子依赖性的非线性极分解(NPDo)。本文建立了两种统一框架,每种方法各适用一个框架。每个框架都建立在一个基本假设之上,即保证全局收敛到静止点,并且在通向静止点的 SCF 迭代过程中,目标函数单调增长。此外,还为每种方法提出了原子函数的概念,原子函数包括常用的线性和二次形式的矩阵迹作为特殊的矩阵迹。结果表明,这些方法的基本假设都能通过各自的原子函数得到满足,更重要的是,能通过各自原子函数的凸合成得到满足。它们共同提供了大量目标,其中一种方法或两种方法都能保证分别适用于这些目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Theory of the NEPv Approach for Optimization on the Stiefel Manifold

The NEPv approach has been increasingly used lately for optimization on the Stiefel manifold arising from machine learning. General speaking, the approach first turns the first order optimality condition into a nonlinear eigenvalue problem with eigenvector dependency (NEPv) and then solve the nonlinear problem via some variations of the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a proper SCF iteration so that a maximizer is found at the end. Currently, each use of the approach is very much individualized, especially in its convergence analysis phase to show that the approach does work or otherwise. Related, the NPDo approach is recently proposed for the sum of coupled traces and it seeks to turn the first order optimality condition into a nonlinear polar decomposition with orthogonal factor dependency (NPDo). In this paper, two unifying frameworks are established, one for each approach. Each framework is built upon a basic assumption, under which globally convergence to a stationary point is guaranteed and during the SCF iterative process that leads to the stationary point, the objective function increases monotonically. Also the notion of atomic function for each approach is proposed, and the atomic functions include commonly used matrix traces of linear and quadratic forms as special ones. It is shown that the basic assumptions of the approaches are satisfied by their respective atomic functions and, more importantly, by convex compositions of their respective atomic functions. Together they provide a large collection of objectives for which either one of approaches or both are guaranteed to work, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1