基于 TRIM21 的分子胶和 PROTAC 降解剂对多聚蛋白的选择性降解

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-11-01 DOI:10.1016/j.cell.2024.10.015
Panrui Lu, Yalong Cheng, Lei Xue, Xintong Ren, Xilong Xu, Chenglong Chen, Longzhi Cao, Jiaojiao Li, Qingcui Wu, Shan Sun, Junjie Hou, Wei Jia, Wei Wang, Yan Ma, Zhaodi Jiang, Chao Li, Xiangbing Qi, Niu Huang, Ting Han
{"title":"基于 TRIM21 的分子胶和 PROTAC 降解剂对多聚蛋白的选择性降解","authors":"Panrui Lu, Yalong Cheng, Lei Xue, Xintong Ren, Xilong Xu, Chenglong Chen, Longzhi Cao, Jiaojiao Li, Qingcui Wu, Shan Sun, Junjie Hou, Wei Jia, Wei Wang, Yan Ma, Zhaodi Jiang, Chao Li, Xiangbing Qi, Niu Huang, Ting Han","doi":"10.1016/j.cell.2024.10.015","DOIUrl":null,"url":null,"abstract":"Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (<em>S</em>)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"33 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders\",\"authors\":\"Panrui Lu, Yalong Cheng, Lei Xue, Xintong Ren, Xilong Xu, Chenglong Chen, Longzhi Cao, Jiaojiao Li, Qingcui Wu, Shan Sun, Junjie Hou, Wei Jia, Wei Wang, Yan Ma, Zhaodi Jiang, Chao Li, Xiangbing Qi, Niu Huang, Ting Han\",\"doi\":\"10.1016/j.cell.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (<em>S</em>)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.10.015\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.10.015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

靶向蛋白质降解(TPD)利用分子粘合剂或蛋白水解靶向嵌合体(PROTAC),通过促进致病蛋白质与 E3 泛素连接酶的相互作用来消除致病蛋白质。目前的 TPD 方法受限于对少数组成型活性 E3 泛素连接酶的依赖。在这里,我们报告了抗精神病药物乙酰丙嗪的代谢产物 (S)-ACE-OH 可作为分子胶水诱导 E3 泛素连接酶 TRIM21 与核蛋白 NUP98 之间的相互作用,从而导致核孔蛋白降解和核胞质贩运中断。将乙酰丙嗪功能化到 PROTACs 中可以选择性地降解多聚蛋白,如生物分子凝聚体中的多聚蛋白,而不降解单体蛋白。这种选择性与底物诱导的集群对 TRIM21 激活的要求是一致的。由于异常蛋白质组装会导致自身免疫、神经变性和癌症等疾病,我们的研究结果凸显了基于 TRIM21 的多聚体选择性降解剂作为解决这些疾病直接病因的一种策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders
Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (S)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Bayesian Approach for Computing Free Energy on Perturbation Graphs with Cycles. Deterministic and Faster GW Calculations with a Reduced Number of Valence States: O(N2 ln N) Scaling in the Plane-Waves Formalism. The Dynamic Diversity and Invariance of Ab Initio Water. Automatic Feature Selection for Atom-Centered Neural Network Potentials Using a Gradient Boosting Decision Algorithm. Data Quality in the Fitting of Approximate Models: A Computational Chemistry Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1