Bruna Araujo David, Jawairia Atif, Fernanda Vargas e Silva Castanheira, Tamanna Yasmin, Adrien Guillot, Yeni Ait Ahmed, Moritz Peiseler, Josefien W. Hommes, Lilian Salm, Marie-Anne Brundler, Bas G. J. Surewaard, Wael Elhenawy, Sonya MacParland, Florent Ginhoux, Kathy McCoy, Paul Kubes
{"title":"库普弗细胞逆向迁移到肝窦可减轻新生儿败血症和脑膜炎的病情","authors":"Bruna Araujo David, Jawairia Atif, Fernanda Vargas e Silva Castanheira, Tamanna Yasmin, Adrien Guillot, Yeni Ait Ahmed, Moritz Peiseler, Josefien W. Hommes, Lilian Salm, Marie-Anne Brundler, Bas G. J. Surewaard, Wael Elhenawy, Sonya MacParland, Florent Ginhoux, Kathy McCoy, Paul Kubes","doi":"10.1126/sciimmunol.adq9704","DOIUrl":null,"url":null,"abstract":"<div >In adults, liver-resident macrophages, or Kupffer cells (KCs), reside in the sinusoids and sterilize circulating blood by capturing rapidly flowing microbes. We developed quantitative intravital imaging of 1-day-old mice combined with transcriptomics, genetic manipulation, and in vivo infection assays to interrogate increased susceptibility of newborns to bloodstream infections. Whereas 1-day-old KCs were better at catching <i>Escherichia coli</i> in vitro, we uncovered a critical 1-week window postpartum when KCs have limited access to blood and must translocate from liver parenchyma into the sinusoids. KC migration was independent of the microbiome but depended on macrophage migration inhibitory factor, its receptor CD74, and the adhesion molecule CD44. On the basis of our findings, we propose a model of progenitor macrophage seeding of the liver sinusoids via a reverse transmigration process from liver parenchyma. These results also illustrate the importance of developing newborn mouse models to understand newborn immunity and disease.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 101","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adq9704","citationCount":"0","resultStr":"{\"title\":\"Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis\",\"authors\":\"Bruna Araujo David, Jawairia Atif, Fernanda Vargas e Silva Castanheira, Tamanna Yasmin, Adrien Guillot, Yeni Ait Ahmed, Moritz Peiseler, Josefien W. Hommes, Lilian Salm, Marie-Anne Brundler, Bas G. J. Surewaard, Wael Elhenawy, Sonya MacParland, Florent Ginhoux, Kathy McCoy, Paul Kubes\",\"doi\":\"10.1126/sciimmunol.adq9704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >In adults, liver-resident macrophages, or Kupffer cells (KCs), reside in the sinusoids and sterilize circulating blood by capturing rapidly flowing microbes. We developed quantitative intravital imaging of 1-day-old mice combined with transcriptomics, genetic manipulation, and in vivo infection assays to interrogate increased susceptibility of newborns to bloodstream infections. Whereas 1-day-old KCs were better at catching <i>Escherichia coli</i> in vitro, we uncovered a critical 1-week window postpartum when KCs have limited access to blood and must translocate from liver parenchyma into the sinusoids. KC migration was independent of the microbiome but depended on macrophage migration inhibitory factor, its receptor CD74, and the adhesion molecule CD44. On the basis of our findings, we propose a model of progenitor macrophage seeding of the liver sinusoids via a reverse transmigration process from liver parenchyma. These results also illustrate the importance of developing newborn mouse models to understand newborn immunity and disease.</div>\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"9 101\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciimmunol.adq9704\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciimmunol.adq9704\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.adq9704","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis
In adults, liver-resident macrophages, or Kupffer cells (KCs), reside in the sinusoids and sterilize circulating blood by capturing rapidly flowing microbes. We developed quantitative intravital imaging of 1-day-old mice combined with transcriptomics, genetic manipulation, and in vivo infection assays to interrogate increased susceptibility of newborns to bloodstream infections. Whereas 1-day-old KCs were better at catching Escherichia coli in vitro, we uncovered a critical 1-week window postpartum when KCs have limited access to blood and must translocate from liver parenchyma into the sinusoids. KC migration was independent of the microbiome but depended on macrophage migration inhibitory factor, its receptor CD74, and the adhesion molecule CD44. On the basis of our findings, we propose a model of progenitor macrophage seeding of the liver sinusoids via a reverse transmigration process from liver parenchyma. These results also illustrate the importance of developing newborn mouse models to understand newborn immunity and disease.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.