Lin Guo, Kenji Miyatake, Suguru Wada, Kouki Oka, Showa Kitajima, Hitoshi Kasai, Ryota Tanaka, Hiroaki Imoto, Kensuke Naka, Fang Xian, Fanghua Liu, Ahmed Mohamed Ahmed Mahmoud, Vikrant Yadav, Chun Yik Wong
{"title":"烷基醚基团修饰的蒽醌基负电极用于提高全固态可充电空气电池的电化学性能","authors":"Lin Guo, Kenji Miyatake, Suguru Wada, Kouki Oka, Showa Kitajima, Hitoshi Kasai, Ryota Tanaka, Hiroaki Imoto, Kensuke Naka, Fang Xian, Fanghua Liu, Ahmed Mohamed Ahmed Mahmoud, Vikrant Yadav, Chun Yik Wong","doi":"10.1021/acssuschemeng.4c05143","DOIUrl":null,"url":null,"abstract":"We developed all solid–state rechargeable air batteries (SSABs) comprising alkyl-ether group-substituted anthraquinone (PE-AQ) as a negative electrode, a proton-conductive aromatic ionomer membrane as a solid electrolyte, and a platinum-based oxygen diffusion positive electrode. Compared with our previous SSABs, the proposed SSAB showed higher open circuit and nominal cell voltages (>1.1 and <i>ca</i>. 0.70–0.60 V, respectively) because of the lower redox potential of the PE-AQ and optimized negative electrode configuration. The Coulombic efficiency was 97%, and superior rate characteristics (>90% up to 100 C) were confirmed. During charge/discharge cycling, 82% of the initial discharge capacity was retained after 100 cycles.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"166 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkyl-Ether Group-Modified Anthraquinone-Based Negative Electrode for Enhanced Electrochemical Performance of All Solid-State Rechargeable Air Batteries\",\"authors\":\"Lin Guo, Kenji Miyatake, Suguru Wada, Kouki Oka, Showa Kitajima, Hitoshi Kasai, Ryota Tanaka, Hiroaki Imoto, Kensuke Naka, Fang Xian, Fanghua Liu, Ahmed Mohamed Ahmed Mahmoud, Vikrant Yadav, Chun Yik Wong\",\"doi\":\"10.1021/acssuschemeng.4c05143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed all solid–state rechargeable air batteries (SSABs) comprising alkyl-ether group-substituted anthraquinone (PE-AQ) as a negative electrode, a proton-conductive aromatic ionomer membrane as a solid electrolyte, and a platinum-based oxygen diffusion positive electrode. Compared with our previous SSABs, the proposed SSAB showed higher open circuit and nominal cell voltages (>1.1 and <i>ca</i>. 0.70–0.60 V, respectively) because of the lower redox potential of the PE-AQ and optimized negative electrode configuration. The Coulombic efficiency was 97%, and superior rate characteristics (>90% up to 100 C) were confirmed. During charge/discharge cycling, 82% of the initial discharge capacity was retained after 100 cycles.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c05143\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c05143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们开发了所有固态可充电空气电池(SSAB),包括作为负极的烷基醚基取代蒽醌(PE-AQ)、作为固态电解质的质子传导芳香离子膜和基于铂的氧扩散正极。与之前的 SSAB 相比,由于 PE-AQ 的氧化还原电位较低,且优化了负极配置,拟议的 SSAB 显示出更高的开路电压和标称电池电压(分别为 1.1 V 和约 0.70-0.60 V)。库仑效率达到了 97%,并且证实了其卓越的速率特性(100 C 以下为 90%)。在充放电循环过程中,经过 100 次循环后,初始放电容量保留了 82%。
Alkyl-Ether Group-Modified Anthraquinone-Based Negative Electrode for Enhanced Electrochemical Performance of All Solid-State Rechargeable Air Batteries
We developed all solid–state rechargeable air batteries (SSABs) comprising alkyl-ether group-substituted anthraquinone (PE-AQ) as a negative electrode, a proton-conductive aromatic ionomer membrane as a solid electrolyte, and a platinum-based oxygen diffusion positive electrode. Compared with our previous SSABs, the proposed SSAB showed higher open circuit and nominal cell voltages (>1.1 and ca. 0.70–0.60 V, respectively) because of the lower redox potential of the PE-AQ and optimized negative electrode configuration. The Coulombic efficiency was 97%, and superior rate characteristics (>90% up to 100 C) were confirmed. During charge/discharge cycling, 82% of the initial discharge capacity was retained after 100 cycles.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.