Joana Figueiredo, Israel Carreira-Barral, Pedro Lourenço, André Miranda, Jéssica Lopes-Nunes, Roberto Quesada, Mafalda Laranjo, Jean-Louis Mergny, Carla Cruz
{"title":"1,10-菲罗啉-2,9-双三唑的合成:作为 G-四联粘合剂和抗肿瘤活性的评估。","authors":"Joana Figueiredo, Israel Carreira-Barral, Pedro Lourenço, André Miranda, Jéssica Lopes-Nunes, Roberto Quesada, Mafalda Laranjo, Jean-Louis Mergny, Carla Cruz","doi":"10.1002/cmdc.202400591","DOIUrl":null,"url":null,"abstract":"<p><p>Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4 a, 4 b, and 5 b as good G4 ligands of KRAS G4 sequences. The impact on cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2 a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards MRC-5 non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2 a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400591"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 1,10-Phenanthroline-2,9-bistriazoles: Evaluation as G-Quadruplex Binders and Anti-Tumor Activity.\",\"authors\":\"Joana Figueiredo, Israel Carreira-Barral, Pedro Lourenço, André Miranda, Jéssica Lopes-Nunes, Roberto Quesada, Mafalda Laranjo, Jean-Louis Mergny, Carla Cruz\",\"doi\":\"10.1002/cmdc.202400591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4 a, 4 b, and 5 b as good G4 ligands of KRAS G4 sequences. The impact on cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2 a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards MRC-5 non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2 a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400591\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400591\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis of 1,10-Phenanthroline-2,9-bistriazoles: Evaluation as G-Quadruplex Binders and Anti-Tumor Activity.
Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4 a, 4 b, and 5 b as good G4 ligands of KRAS G4 sequences. The impact on cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2 a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards MRC-5 non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2 a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.