1,10-菲罗啉-2,9-双三唑的合成:作为 G-四联粘合剂和抗肿瘤活性的评估。

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL ChemMedChem Pub Date : 2024-11-02 DOI:10.1002/cmdc.202400591
Joana Figueiredo, Israel Carreira-Barral, Pedro Lourenço, André Miranda, Jéssica Lopes-Nunes, Roberto Quesada, Mafalda Laranjo, Jean-Louis Mergny, Carla Cruz
{"title":"1,10-菲罗啉-2,9-双三唑的合成:作为 G-四联粘合剂和抗肿瘤活性的评估。","authors":"Joana Figueiredo, Israel Carreira-Barral, Pedro Lourenço, André Miranda, Jéssica Lopes-Nunes, Roberto Quesada, Mafalda Laranjo, Jean-Louis Mergny, Carla Cruz","doi":"10.1002/cmdc.202400591","DOIUrl":null,"url":null,"abstract":"<p><p>Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4 a, 4 b, and 5 b as good G4 ligands of KRAS G4 sequences. The impact on cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2 a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards MRC-5 non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2 a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400591"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 1,10-Phenanthroline-2,9-bistriazoles: Evaluation as G-Quadruplex Binders and Anti-Tumor Activity.\",\"authors\":\"Joana Figueiredo, Israel Carreira-Barral, Pedro Lourenço, André Miranda, Jéssica Lopes-Nunes, Roberto Quesada, Mafalda Laranjo, Jean-Louis Mergny, Carla Cruz\",\"doi\":\"10.1002/cmdc.202400591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4 a, 4 b, and 5 b as good G4 ligands of KRAS G4 sequences. The impact on cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2 a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards MRC-5 non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2 a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400591\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400591\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

通过铜催化的叠氮/炔环加成反应合成了新型 1,10-菲罗啉-2,9-双三唑衍生物,并评估了它们结合和稳定 G-四链路(G4)结构的能力。研究人员使用佛斯特共振能量转移(FRET)熔融、圆二色性(CD)和荧光光谱对几种 G4 序列上的十种新型化合物进行了评估。生物物理表征结果表明,化合物 4a、4b 和 5b 是 KRAS G4 序列的良好 G4 配体。此外,还对所有衍生物的细胞活力进行了评估,结果显示其作用较弱。然而,化合物 2a 对 A549 和 H1299 癌细胞具有细胞毒性活性,而对非恶性细胞 MRC-5 的细胞毒性较低,这与其 G4 结合能力无关。流式细胞仪显示,2a 会导致 A549 和 H1299 细胞在 S 期和 G2/M 期的存活率下降;因此,应开展更多研究来探索参与细胞周期调节的蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of 1,10-Phenanthroline-2,9-bistriazoles: Evaluation as G-Quadruplex Binders and Anti-Tumor Activity.

Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4 a, 4 b, and 5 b as good G4 ligands of KRAS G4 sequences. The impact on cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2 a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards MRC-5 non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2 a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
期刊最新文献
Virtual Screening and Biological Evaluation of Natural Products as Novel VPS34 Inhibitors that Modulate Autophagy. Artificial Ion Transporters as Potent Therapeutics for Channelopathies. Highlights from the Lowlands: Early Career Researchers Shine at Medicinal Chemistry Frontiers 2024. Front Cover: Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation (ChemMedChem 22/2024) Cover Feature: Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling (ChemMedChem 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1