{"title":"RFNet:基于递归表示和特征增强的多变量长序列时间序列预测。","authors":"Dandan Zhang , Zhiqiang Zhang , Nanguang Chen , Yun Wang","doi":"10.1016/j.neunet.2024.106800","DOIUrl":null,"url":null,"abstract":"<div><div>Multivariate time series exhibit complex patterns and structures involving interactions among multiple variables and long-term temporal dependencies, making multivariate long sequence time series forecasting (MLSTF) exceptionally challenging. Despite significant progress in Transformer-based methods in the MLSTF domain, many models still rely on stacked encoder–decoder architectures to capture complex time series patterns. This leads to increased computational complexity and overlooks spatial pattern information in multivariate time series, thereby limiting the model’s performance. To address these challenges, we propose RFNet, a lightweight model based on recurrent representation and feature enhancement. We partition the time series into fixed-size subsequences to retain local contextual temporal pattern information and cross-variable spatial pattern information. The recurrent representation module employs gate attention mechanisms and memory units to capture local information of the subsequences and obtain long-term correlation information of the input sequence by integrating information from different memory units. Meanwhile, we utilize a shared multi-layer perceptron (MLP) to capture global pattern information of the input sequence. The feature enhancement module explicitly extracts complex spatial patterns in the time series by transforming the input sequence. We validate the performance of RFNet on ten real-world datasets. The results demonstrate an improvement of approximately 55.3% over state-of-the-art MLSTF models, highlighting its significant advantage in addressing multivariate long sequence time series forecasting problems.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106800"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RFNet: Multivariate long sequence time-series forecasting based on recurrent representation and feature enhancement\",\"authors\":\"Dandan Zhang , Zhiqiang Zhang , Nanguang Chen , Yun Wang\",\"doi\":\"10.1016/j.neunet.2024.106800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multivariate time series exhibit complex patterns and structures involving interactions among multiple variables and long-term temporal dependencies, making multivariate long sequence time series forecasting (MLSTF) exceptionally challenging. Despite significant progress in Transformer-based methods in the MLSTF domain, many models still rely on stacked encoder–decoder architectures to capture complex time series patterns. This leads to increased computational complexity and overlooks spatial pattern information in multivariate time series, thereby limiting the model’s performance. To address these challenges, we propose RFNet, a lightweight model based on recurrent representation and feature enhancement. We partition the time series into fixed-size subsequences to retain local contextual temporal pattern information and cross-variable spatial pattern information. The recurrent representation module employs gate attention mechanisms and memory units to capture local information of the subsequences and obtain long-term correlation information of the input sequence by integrating information from different memory units. Meanwhile, we utilize a shared multi-layer perceptron (MLP) to capture global pattern information of the input sequence. The feature enhancement module explicitly extracts complex spatial patterns in the time series by transforming the input sequence. We validate the performance of RFNet on ten real-world datasets. The results demonstrate an improvement of approximately 55.3% over state-of-the-art MLSTF models, highlighting its significant advantage in addressing multivariate long sequence time series forecasting problems.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106800\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089360802400724X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802400724X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
RFNet: Multivariate long sequence time-series forecasting based on recurrent representation and feature enhancement
Multivariate time series exhibit complex patterns and structures involving interactions among multiple variables and long-term temporal dependencies, making multivariate long sequence time series forecasting (MLSTF) exceptionally challenging. Despite significant progress in Transformer-based methods in the MLSTF domain, many models still rely on stacked encoder–decoder architectures to capture complex time series patterns. This leads to increased computational complexity and overlooks spatial pattern information in multivariate time series, thereby limiting the model’s performance. To address these challenges, we propose RFNet, a lightweight model based on recurrent representation and feature enhancement. We partition the time series into fixed-size subsequences to retain local contextual temporal pattern information and cross-variable spatial pattern information. The recurrent representation module employs gate attention mechanisms and memory units to capture local information of the subsequences and obtain long-term correlation information of the input sequence by integrating information from different memory units. Meanwhile, we utilize a shared multi-layer perceptron (MLP) to capture global pattern information of the input sequence. The feature enhancement module explicitly extracts complex spatial patterns in the time series by transforming the input sequence. We validate the performance of RFNet on ten real-world datasets. The results demonstrate an improvement of approximately 55.3% over state-of-the-art MLSTF models, highlighting its significant advantage in addressing multivariate long sequence time series forecasting problems.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.