{"title":"佛手柑精油诱导抗焦虑效应的神经回路","authors":"Meng-Yu Zhu, Wan-Ying Dong, Jin-Rong Guo, Ji-Ye Huang, Ping-Kai Cheng, Yumeng Yang, An Liu, Xin-Lu Yang, Xia Zhu, Zhi Zhang, Yuanyin Wang, Wenjuan Tao","doi":"10.1002/advs.202406766","DOIUrl":null,"url":null,"abstract":"<p><p>Aromatic essential oils have been shown to relieve anxiety and enhance relaxation, although the neural circuits underlying these effects have remained unknown. Here, it is found that treatment with 1.0% bergamot essential oil (BEO) exerts anxiolytic-like effects through a neural circuit projecting from the anterior olfactory nucleus (AON) to the anterior cingulate cortex (ACC) in acute restraint stress model mice. Collectively, in vivo two-photon calcium imaging, viral tracing, and whole-cell patch clamp recordings show that inhalation exposure to 1.0% BEO can activate glutamatergic projections from the AON to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (AON<sup>Glu</sup>→ACC<sup>GABA→Glu</sup>). Optogenetic or chemogenetic manipulation of this pathway can recapitulate or abolish the BEO-induced anxiolytic-like behavioral effects in mice with ARS. Beyond depicting a previously unrecognized pathway involved in stress response, this study provides a circuit mechanism for the effects of BEO and suggests a potential target for anxiety treatment.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Circuit For Bergamot Essential Oil-Induced Anxiolytic Effects.\",\"authors\":\"Meng-Yu Zhu, Wan-Ying Dong, Jin-Rong Guo, Ji-Ye Huang, Ping-Kai Cheng, Yumeng Yang, An Liu, Xin-Lu Yang, Xia Zhu, Zhi Zhang, Yuanyin Wang, Wenjuan Tao\",\"doi\":\"10.1002/advs.202406766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aromatic essential oils have been shown to relieve anxiety and enhance relaxation, although the neural circuits underlying these effects have remained unknown. Here, it is found that treatment with 1.0% bergamot essential oil (BEO) exerts anxiolytic-like effects through a neural circuit projecting from the anterior olfactory nucleus (AON) to the anterior cingulate cortex (ACC) in acute restraint stress model mice. Collectively, in vivo two-photon calcium imaging, viral tracing, and whole-cell patch clamp recordings show that inhalation exposure to 1.0% BEO can activate glutamatergic projections from the AON to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (AON<sup>Glu</sup>→ACC<sup>GABA→Glu</sup>). Optogenetic or chemogenetic manipulation of this pathway can recapitulate or abolish the BEO-induced anxiolytic-like behavioral effects in mice with ARS. Beyond depicting a previously unrecognized pathway involved in stress response, this study provides a circuit mechanism for the effects of BEO and suggests a potential target for anxiety treatment.</p>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202406766\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406766","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
芳香精油已被证明可以缓解焦虑和增强放松,但这些作用所依赖的神经回路却一直不为人知。本文发现,在急性束缚应激模型小鼠中,1.0%的佛手柑精油(BEO)可通过从前嗅核(AON)投射到前扣带回皮层(ACC)的神经回路产生类似抗焦虑的效果。体内双光子钙成像、病毒追踪和全细胞膜片钳记录共同表明,吸入 1.0% 的 BEO 可激活从 AON 到 ACC 中 GABA 能神经元的谷氨酸能神经投射,从而驱动对局部谷氨酸能神经元(AONGlu→ACCGABA→Glu)的抑制。对这一通路进行光遗传学或化学遗传学操作可以重现或消除 BEO 诱导的 ARS 小鼠抗焦虑样行为效应。这项研究不仅描述了一种以前未被认识到的参与应激反应的通路,还为BEO的效应提供了一种回路机制,并为焦虑症治疗提出了一个潜在的靶点。
A Neural Circuit For Bergamot Essential Oil-Induced Anxiolytic Effects.
Aromatic essential oils have been shown to relieve anxiety and enhance relaxation, although the neural circuits underlying these effects have remained unknown. Here, it is found that treatment with 1.0% bergamot essential oil (BEO) exerts anxiolytic-like effects through a neural circuit projecting from the anterior olfactory nucleus (AON) to the anterior cingulate cortex (ACC) in acute restraint stress model mice. Collectively, in vivo two-photon calcium imaging, viral tracing, and whole-cell patch clamp recordings show that inhalation exposure to 1.0% BEO can activate glutamatergic projections from the AON to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (AONGlu→ACCGABA→Glu). Optogenetic or chemogenetic manipulation of this pathway can recapitulate or abolish the BEO-induced anxiolytic-like behavioral effects in mice with ARS. Beyond depicting a previously unrecognized pathway involved in stress response, this study provides a circuit mechanism for the effects of BEO and suggests a potential target for anxiety treatment.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.